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ABSTRACT OF THESIS 

 

 

 
SEDIMENT TRANSPORT MODELLING USING  DYNAMIC (DIS)CONNECTIVITY 

PREDICTION  FOR A BEDROCK CONTROLLED CATCHMENT 

 

The (dis)connectivity of sediment, defined as the detachment and transport of 
sediment from source to sink between geomorphic zones, is a major control on sediment 
transport rates but has seldom taken precedence in sediment transport models that focus on 
assessment of sediment impacts on water supply. A watershed-scale sediment transport 
model was formulated that incorporates sediment (dis)connectivity knowledge and 
subroutines and predicts sediment flux through coupling with an excessive shear stress 
erosion equation. The intersecting probabilities of sediment supply, detachment, transport, 
and (dis)connectivity produce the probability of sediment connectivity for a watershed or 
region of a watershed. The integration of the net watershed probability of sediment 
connectivity yields an estimate of the active watershed area in terms of sediment transport 
when multiplied times the entire watershed area. The sediment transport model was tested 
for a bedrock controlled catchment in the Southeastern United States for which extensive 
historic water and sediment flux data was available. It is expected that the model presented 
here can be used as a tool to assess the regional impacts of natural and anthropogenic 
sources of (dis)connectivity on sedimentation rates that lead to problems such as reservoir 
sedimentation and water quality degradation. 

KEYWORDS: connectivity, disconnectivity, erosion, watershed, watershed 
modelling, sediment transport modelling 
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Chapter 1 Introduction 
1.1 Watershed Sedimentation Concerns 

The study of sedimentation in watersheds is particularly important because of the 

harmful impact sediments can have on aquatic life, algae, civil infrastructure (i.e. 

reservoirs), and water quality (Wood and Armitage, 1997; FISRWG, 1998; Morris and 

Fan, 1998; USEPA, 1999; Zappou, 2001 USEPA, 2004). Fine sediments are of concern 

because of their acknowledged impact on primary producers due to the increase of turbidity 

in water bodies, thus limiting light penetration necessary for photosynthesis (Wood and 

Armitage, 1997). The connection of sediments from watershed uplands into stream 

networks has been studied for quite some time by ecologists (Pringle, 2001) in particular. 

This is because sediments can reduce the growth rate, reproduction rate, and life span of 

fish and macroinvertebrates by impairing the ability of aquatic organisms to hunt, reducing 

their immunity to disease, and clogging their respiratory systems (Wood and Armitage, 

1997; Richardson and Jowett, 2002).  

Fine sediments are defined as particulate organic and inorganic matter less than 63 

µm in diameter and are one of the primary causes of stream impairment in the United States 

and in the Commonwealth of Kentucky, (Bailey and Waddell, 1979; Rabeni et al., 2004; 

Kentucky Division of Water, 2012). The cohesive nature of fine sediments promotes 

chemical bonding of nutrients and contaminates that can adversely affect the water quality 

of stream networks (Long et al., 1998; Owens et al., 2001). Nutrients can cause 

eutrophication within water bodies, promoting algal blooms (Castro and Reckindorf, 

1995), which further hinder water quality and aquatic ecosystems by decreasing the 
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dissolved oxygen within water bodies, decreasing food supply for aquatic organisms, and 

decreasing available habitat for aquatic organisms. Some algae, known as blue-green algae 

or cyanobacterial algae, can be toxic to humans to consume and touch (Smith et al., 2015; 

Brooks et al., 2016). Fine sediments that bond with heavy metals also pose health problems 

to humans and aquatic life (USEPA, 2004).  

 Sedimentation affects water supply capacity as well as water quality. Reservoir 

sedimentation reduces reservoir storage capacity, meaning there is less water available for 

human use (USEPA, 2009). The quantification of watershed sedimentation has proven to 

be precarious over many years due to what Walling (1983) has defined as the sediment 

delivery problem. The sediment delivery problem is conceptualized by the idea that only a 

fraction of detached sediment is yielded at the basin outlet.  

1.2 Sedimentation and Water Supply  

Abundant water supply is vital to the survival, sustainability, and growth of 

communities.  One common threat to urban water supply systems is reservoir 

sedimentation, which is defined as the deposition of sediment to the bed of a water supply 

basin (Murray, 1970; Sumi and Hirose, 2005; Randle and Collins, 2012). Sedimentation 

threatens water supply in two primary ways: (i) sediments may clog water distribution 

system intakes, increasing the difficulty for communities to receive water (Randle and 

Collins, 2012; Morris and Fan, 2009); and (ii) sedimentation may decrease the effective 

water storage capacity of the reservoir (Haregewyn et al. 2012; Morris and Fan, 2009; 

Annandale, 1987). The latter threat suggests the need for assessment of current water 

storage and projected future storage losses due to sedimentation.  In order to quantify 

reservoir sedimentation, it is necessary to estimate transport rates of sediment to reservoirs; 
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and knowledge of sediment source, transport, and fate within a watershed provide the basis 

for such estimates. Sediment originates from erosion of weathered rock and soils in the 

uplands of watersheds and bank and legacy sediments in the stream corridor. Sediment 

detachment occurs when shear stress due to water, wind, and ancillary processes 

overcomes the critical shear stress binding sediment particles together (Partheniades, 

1965). Sediment is transferred to the stream network through various erosional processes 

such as sheet wash, gulley, and rill erosion in the uplands, and streambank and channel 

erosion within the stream corridor (Reid and Dunne, 1996; Toy et al, 2002). Flow 

acceleration during an onset of major storm events is a major catalyst for sediment entering 

stream networks, although low flow and moderate events have also been found to assist 

with the long-term propagation of sediment from low order to high order streams (Russo 

and Fox, 2012).   

Figure 1.1 shows how intensifiers, such as urbanization, land use change, 

population growth, and climate change affect both the processes governing reservoir 

sedimentation and water supply and demand rates. Sedimentation is exacerbated as long-

term watershed scale changes, such as urbanization, and environmental changes enhance 

sediment transport to reservoirs. Urbanization is typically accepted to decrease the 

infiltration capacity of soils across a watershed and increase runoff depth, peak streamflow 

rates, and hence increase the rates of upland and stream erosion processes that lead to 

reservoir sedimentation (Russo and Fox, 2012; McGriff, 1972; Trimble, 1997). Similarly, 

climate change causes variations in rainfall amounts and intensities over time (Kundzewicz 

et al., 2007), which in turn has the potential to increase runoff depths and peak flows, thus 

exacerbating sedimentation.  Recent climate forecasts suggest that the mean annual rainfall 
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amount (ensemble average) will increase by 10% in the inner Bluegrass physiographic 

region of Kentucky (NCA, 2014).  In addition to the mentioned sediment processes, 

urbanization increases the demand of water taken from reservoirs while simultaneously 

decreasing the available supply of water from reservoirs. Climate change could potentially 

decrease the supply of water available during drought periods (Backlund et al., 2008).  

Therefore, both supply and demand should be budgeted when considering the future 

forcings.  

Due to the low energy of water movement within water supply reservoirs, sediment 

particles are prone to deposition. The trapping efficiency of some water supply reservoirs 

is near 100%, meaning that all sediment that enters the reservoir is trapped there 

indefinitely (McCully, 1996). Thus, water supply capacity is threatened by the existence 

of high sediment concentrations of incoming flows. In order to mitigate the effects of 

sedimentation on water supply, researchers and consultants use a variety of methods to 

estimate reservoir sedimentation rates. These include bathymetric surveys, turbidity 

measurements, sediment borings, sediment trapping, and the development of empirical 

regression curves (Furnans and Austin, 2008; Juracek, 2013; Morris and Fan, 1998; Effler 

et al., 2006; Singh and Durgunoglu, 1989),  

There are several sediment control strategies commonly practiced to mitigate the 

effects of reservoir sedimentation on water supply including: (1) limiting upstream erosion 

and sediment transport to reduce sediment inflow, (2) routing sediments around or through 

the retaining facility, and (3) manually removing or excavating deposited sediments from 

the reservoir floor (Morris and Fan, 1998; Sumi and Hirose, 2009; Haregeweyn et al., 

2012). Reducing sediment inflow involves preventing erosion at the sediment source 



5 
 

through common best management practices (BMPs) such as bank stabilization and 

riparian buffer reestablishment (Brown, 2000; Burt et al., 1999). Spatially explicit erosion 

models are commonly used to estimate locations within the watershed where erosion and 

sedimentation are most pronounced. These are locations where BMPs can be implemented 

to reduce the amount of sediment entering the stream network. Sediment transport can also 

be limited longitudinally (i.e. within small tributaries and concentrated flow pathways) 

through the use of check dams designed to catch and deposit sediment prior to entering the 

stream network (Haregeweyn et al., 2012). Once sediment has been deposited, however, it 

can be removed through manual excavation (Sumi and Hirose, 2009). Examples of this are 

dredging, the process of scooping/digging sediments and moving them elsewhere, and dry 

excavation, the emptying of the reservoir and using excavating equipment to remove 

sediments. 

Sedimentation’s detrimental impact on water supply remains a threat to national 

and international water infrastructure (US Interagency Meeting on Sedimentation, 2012; 

EOS, 2014). Therefore, researchers are working towards quantifying how human and 

natural intensifiers govern water supply reduction through sedimentation processes. One 

of the greatest sources of uncertainty in predicting sedimentation and its impacts on water 

supply is connecting upland soil erosion processes with downstream sedimentation, which 

can indicate where sedimentation and erosion are most pronounced in watershed.  

1.3 Contents of Thesis 

Chapter 1 of this thesis lists the threats posed by fine sediments and the processes 

of watershed erosion and sedimentation that affect water supply.  
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Chapter 2 discusses watershed erosion models that have been previously developed 

how they can be improved with the coupling of the geomorphologic concept of sediment 

(dis)connectivity. A literature review is provided discussing advancements in watershed 

erosion modelling and the concept of (dis)connectivity. The motivation and objectives of 

the research are also presented here. 

Chapter 3 describes the model framework and formulation of the (dis)connectivity 

and erosion model. 

Chapter 4 provides information about the study site within the Kentucky River 

Basin. The physiography, climatology, and dominant sediment transport processes of the 

study watershed are outlined.  

Chapter 5 provides the methodology of the WAVES Protocol, an in-house 

watershed visual assessment protocol that elucidates watershed erosion and sedimentation 

processes in the field.  

Chapter 6 discusses the model set up, inputs, parameterization, calibration, and 

validation for the (dis)connectivity and watershed erosion model.  

Chapter 7 provides the results of the (dis)connectivity and watershed erosion 

models.  

Chapter 8 discusses the results of the models and compares the results and methods 

of this thesis to previously developed watershed models.  

Chapter 9 provides the conclusions of this thesis.  
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Figure 1.1: Conceptualization of the effect of intensifiers on reservoir sedimentation 
processes 
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Chapter 2 Literature Review, Research Needs, Motivation and Objectives: 

2.1 Watershed Erosion Modelling: Past Advancement and Future Needs  

 The authors argue that currently there is a need for the advancement of watershed 

erosion modelling tools within the environmental water resources community.  Watershed 

erosion modelling has seen substantial advancement over the past four decades resulting 

from the intensive field data collection systems and experimental watersheds of the 1970s 

and 1980s, the coupled hydrologic formula advancement of the 1980s, and the 

computational and geospatial data advancements of the 1990s and 2000s that have 

produced watershed modelling platforms (Walling, 1983; Merritt et al., 2003; Russo, 

2009).  Nevertheless, watershed erosion modelling is currently hindered by a number of 

weaknesses that do not allow proper representation of landscape hydrologic and sediment 

transport processes.  As a precursor to detailing the current limitations, the authors review 

the three classes of watershed erosion models known as empirical, conceptual, and 

physically based models (Merritt et al., 2003; Russo, 2009). 

2.2 Classification of Watershed Erosion Models 

Empirical models are data driven, meaning that many years of data collection are 

necessary to predict future conditions (Merritt et al., 2003). Empirical models are 

invalidated if used outside of the study area for which data was collected or if significant 

alterations to the study area occur because the conditions under which data collection 

occurred have likely changed (Merritt et al., 2003). In order to predict dependent variables 

(i.e. sediment yield), empirical models relate independent variables (such as flow rate) to 

the dependent variable. Thus, empirical models do not directly model the individual 

processes of watershed sedimentation and erosion (Zoppou, 2001).  
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 Conceptual models typically lump watershed areas with similar characteristics 

together and apply process-based equations across the lumped unit. Typically conceptual 

models are not spatially explicit, thus do not detail specific processes at their actual location 

within the watershed (Zoppou, 2001; Merritt et al., 2003; Aksoy and Kavvas, 2005).  

Unlike empirical models, conceptual models can be applied to many different study sites 

or watersheds given that they are calibrated correctly. Because of the lumped-nature of 

conceptual models, data input requirements are generally not extensive (Merritt et al., 

2003).   

 Physically based watershed erosion and sedimentation models use the laws of 

physics to predict sediment flux. Physically based models most accurately model specific 

processes, however typically the parameters used to model and calibrate processes are only 

applicable at small scales (i.e. hillslopes) and cannot be up-scaled (Letcher et al., 2002; 

Merritt et al., 2003). Physical models use conservation laws such as the law of conservation 

of mass and the law of conservation of momentum to predict sediment transport. Often, 

data input requirements are large for physically based models (Adams and Elliot, 2006).   

 It should be noted that some lumped parameter models are physically based in 

regards to their attempt to simulate physical processes, but use global calibration 

approaches to parameterize the model. Hence, not all lumped parameter models are 

conceptual models and not all physically based models are spatially explicit.  

2.3 Limitations of Current Watershed Erosion Models 

 The authors point out that the readily used classification of watershed erosion 

models as empirical, conceptual or physically based is in some ways incorrect, or at best 

has fuzzy boundaries.  That is, even the most empirical models typically incorporate 
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conservation principles to some degree while the most physically based models incorporate 

empiricism.  For example, the Universal Soil Loss Equation (USLE) (Wischmeier and 

Smith, 1978) is a widely used empirical model in the United States that incorporates the 

energy of rainfall during hydrologic events within its model structure.  And, the Watershed 

Erosion Prediction Project (WEPP) model (Laflen et al., 1991) is a widely used, continuity 

based physical model that relies on many empirical coefficients within its model structure 

that can be adjusted during the model evaluation stage.   

 The point the authors strive to put forth is that all watershed erosion models attempt 

to incorporate conservation principles, require some empiricism, and exhibit some scale 

dependence.  These characteristics of watershed erosion models can be used to highlight a 

number of weaknesses of watershed erosion models that do not allow proper representation 

of landscape hydrologic and sediment transport processes.   

First, the conservation of mass, momentum, and energy applied within watershed 

erosion models is typically incomplete or highly simplified.  For example, even the 

process-based WEPP model relies on the assumption of one dimensional flow on the 

hillslope and considers transport phenomena as steady state equilibrium.  It is not yet 

computationally practical to simulate three dimensional unsteady flow across the landscape 

that comprises a watershed.  Further, even if it were computationally feasible, scientists 

still lack a comprehensive understanding of transitional flow and turbulent flow 

interactions with sediment grains and aggregates over the fairly thin flow layers that make 

up overland flows.   

Second, the heterogeneity of sediment properties across the landscape as well as 

the previously mentioned lack of understanding of fluid-sediment coupled currently require 
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empiricism within watershed erosion modelling.  For example, the process-based WEPP 

uses the excessive stress function to simulate fluvial erosion within rills; and it is well 

recognized that over thirty different soil properties can impart some influence upon the 

empirical critical shear stress of cohesive sediment used within the excessive stress 

function.  Fine sediment, by its nature, is highly heterogeneous with four aggregation levels 

of different shear strength considered just for features smaller than a few millimeters.  

Scientists currently lack an understanding of sediment strength, and therefore empiricism 

will continue to be incorporated into our models.   

Third, watershed erosion models are by their nature scale limited.  Scale limitations 

of watershed erosion models show an interdependency with the assumed simplified state 

of the conservation principles applied within a particular model as well as the sediment 

parameter spatial scales assumed to control sediment resistance.  However, perhaps more 

so, scale limitations arrive from the lack of watershed erosion models to explicitly consider 

the configuration of the landscape.  The catchment configuration in terms of its 

morphologic features and their connectivity, or lack thereof, is now well recognized to 

impart non-linearity upon the sediment transport phenomena within watersheds (Phillips, 

2003).  Yet, watershed erosion models have tended to stay focused on modelling sediment 

transport phenomena specific to a given watershed feature, e.g., floodplains, rills, or sheet 

flow. 

Overcoming the three watershed erosion modelling limitations will likely require 

on-going and future research initiatives the next few decades.  Such endeavors will be 

focused most likely on computational fluids research to better incorporate conservation 

principles at higher dimensions, improved basic science of the bio-physio-chemical matrix 
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that makes up sediment to overcome empiricism of sediment properties, and greater 

spatiotemporal investigation of landscape morphology and connectivity to overcome scale 

dependence.   

2.4 Current Motivation of this Thesis Research 

 In the current research, the authors aim to advance watershed erosion modelling by 

coupling erosion formula with a greater spatiotemporal investigation of landscape 

morphology and connectivity to overcome scale dependence, i.e., the third limitation 

mentioned above.  The authors argue that the time is ripe to advance watershed erosion 

modelling by improving its spatiotemporal context for several reasons.  Highly resolved 

topographic and landscape featured datasets are now available, often freely available, that 

makes incorporation of such data into watershed platforms feasible.  Also, geomorphologic 

field-based and geospatial-based investigation has been highly advanced in recent years to 

focus on the topic of sediment connectivity.  Sediment connectivity is now recognized to 

be a major control on sediment budgets (Fryirs et al., 2007), but has seldom taken 

precedence in quantitative sediment transport models (Ambroise, 2004; De Vente et al., 

2005; Heckmann and Schwanghart, 2013).  

 Therefore, the present work aims to represent the watershed configuration and its 

connectivity within watershed erosion modelling.  The motivation of this thesis is to couple 

the conceptual idea of dynamic sediment connectivity and (dis)connectivity within 

watershed erosion modelling, and thus advance modelling platforms, in order to predict 

how sedimentation will affect water supply.  In this manner, sediment disconnectivity can 

be used as a precursor to simulation of watershed erosion modelling in order to focus on 

the active morphologic features that might produce sediment. 
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2.5 Features of Sediment Connectivity and (Dis)Connectivity 

 The concept of sediment connectivity and (dis)connectivity has been advanced over 

the past few decades and requires some review of its features prior to incorporation within 

a watershed erosion model framework.  The overarching aim of sediment connectivity and 

(dis)connectivity is to understand the configuration of the watershed and its role within the 

sediment continuum.  This aim is achieved through interrelated field investigation and 

geospatial assessment of the watershed. 

 Geomorphologists have now introduced us to the concept of sediment connectivity 

and disconnectivity.  In the geomorphic body of literature, three types of connectivity are 

assessed: (1) landscape connectivity, (2) hydrologic connectivity, and (3) sediment 

connectivity, and in this thesis the third type of connectivity is focused upon.  Sediment 

connectivity refers to the transfer of sediment through detachment and transport from 

source to sink between various geomorphic zones at the catchment scale (Jain and Tandon, 

2010; Bracken et al., 2015).  The conceptual development of landscape (i.e., morphologic) 

and hydrologic connectivity has progressed the knowledge of sediment connectivity; 

however, hydrologic connectivity does not necessarily imply sediment connectivity. 

(Bracken et al., 2015).  Hydrologic connectivity specifically refers to the connected transfer 

of water between sources and sinks amongst geomorphic zones, and the governing 

processes relegating runoff production and sediment production are well known to differ. 

The concept of catchment connectivity has existed in the ecological community for quite 

some time, but has only recently been applied to hydrologic and sedimentologic processes 

in catchments (Ward, 1989; Pringle, 2003).  Connectivity is used to help remedy what 

Walling (1983) named the sediment delivery problem; i.e. that only a fraction of eroded 
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sediment is yielded at the catchment outlet. Analysis of this concept includes: (1) the 

identification of sediment sources, (2) the mechanics of sediment detachment via excessive 

shearing forces, (3) the entrainment and transport of sediment to downstream locations, 

and (4) the deposition of sediment in stores and sinks (Walling, 1983).  

Sediment disconnectivity measures the distribution of sediment stores and sinks, 

their routes and distances of sediment transport, and assesses the inability of source to sink 

transport during hydrologic events (Fryirs et al., 2007); and sediment disconnectivity 

specifically emphasizes the impedance of sediment transport from morphologic features 

such as buffers, barriers, blankets (Fryirs, 2013). Buffers refer to lateral disconnecting 

features that limit the movement of sediment from the uplands into the stream network, 

such as long floodplains, which cause sediment deposition. Barriers refer to longitudinal 

disconnecting features that limit the movement of sediment within the stream network. 

Examples of barriers include manmade dams and sand bars, which accumulate sediment. 

Blankets refer to vertically disconnecting features that limit the surface-subsurface 

movement of sediment. Armoring materials found within streambeds act as blankets by 

preventing buried streambed sediments from erosive fluvial shear forces (Fryirs, 2007; 

Fryirs, 2013). Land that actively contributes to the sediment cascade at any particular time 

step is referred to as the active contributing area of watershed (Ambroise, 2004). Thus, 

sections of the catchment that do not contribute sediment to the watershed outlet (i.e. are 

disconnected) are not considered as a part of the active contributing area. The period when 

a particular landscape contributes sediment to the watershed outlet is known as the active 

contributing period of sediment erosion (Harvey, 2002; Fryirs, 2013). Because of 

disconnectivities, much of the sediment initially displaced by upland erosion is deposited 
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and seldom quickly makes it downstream to the catchment outlet at the event timescale—

a phenomena referred to as the “Jerky Conveyor Belts” of sediment transport (Ferguson, 

1981; Fryirs, 2013).   

 In general, sediment connectivity research has focused on theoretical development; 

and therefore most sediment connectivity models thus far are conceptual in nature or 

represent connectivity as an index.  Previous developed sediment connectivity and 

(dis)connectivity models in the literature include the following.  Fryirs et al., (2007) 

mapped disconnectivity via the active contributing area using a slope threshold method.  

Borselli et al., (2008) developed the index of connectivity (IC) Model, which relates the 

probability of upstream transport and the probability of downstream transport to an overall 

probability of sediment connectivity.  Souza et al. (2016), Lopez-Vincent et al. (2013), 

Cavalli et al. (2013), Vigiak et al. (2012), and Messenzehl et al. (2014) all have used 

iterations of  the IC model.  D’Haen et al. (2013) mapped connectivity using sediment 

fingerprinting techniques coupled with Borselli’s index of connectivity to assess sediment 

connectivity in Eastern Europe.  Heckmann and Schwanghart (2013) used graph theory to 

assess the network of sediment pathways.  Michaelides and Wainwright (2002) developed 

a basic model of connectivity that is applicable to the hillslopes.  Medeiros et al (2009), 

modeled connectivity using re-infiltration and lateral distribution parameters to account for 

distributed (dis)connectivity.    

2.6 Dynamic Connectivity 

Connectivity is dynamic by its nature, meaning that it varies temporally based on 

long-term geomorphologic change and constantly changing hydrologic conditions within 

the catchment (Bracken et al., 2015). Long-term geomorphologic change refers to the 
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evolution of landscapes over time due to fluvial, eolian, or ancillary forces. Short-term 

hydrologic conditions refer to antecedent moisture conditions of the soil, precipitation, and 

runoff depth and volume.  Typically, sediment connectivity models do not conceptually 

account for the dynamic nature of connectivity. Rather, popular connectivity models tend 

to assess only the static connections (i.e. physical connections) within catchments, e.g., 

Borselli et al., (2008).  Few models capture the dynamic processes that commence sediment 

detachment and transport (Fryirs, 2013).   

2.7 Sediment Connectivity Modeling Needs 

 Based on review of the sediment connectivity concepts, the authors find that few 

models exist that quantify sediment connectivity based on processes and rather rely on 

empirical indices and proxies of sediment connectivity (Medeiros et al., 2009; Bracken et 

al., 2015).  A theoretical basis is needed that allows prediction of sediment connectivity 

based on the many controlling factors and processes.  Therefore, herein a probabilistic 

framework will be proposed to meet this research need. 

 In addition, the authors find that dynamic sediment (dis)connectivity that 

incorporates temporarily varying hydrology has not been widely included in connectivity 

estimates (Ambroise, 2004; Lexartza-Artza and Wainwright, 2009).  Therefore, herein the 

authors develop a theoretical basis that allows coupling of sediment connectivity formula 

with hydrologic modeling such as via an off-the-shelf watershed scale model. 

2.8 Considerations for Coupling the Sediment Connectivity within Watershed 

Erosion Modelling 

 As mentioned, the current motivation of this research is to couple the conceptual 

idea of dynamic sediment connectivity and (dis)connectivity within watershed erosion 
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modelling, and thus advance the watershed erosion modelling platform for sedimentation 

and water supply needs. In this light, reservoirs serve as a major source of longitudinal 

sediment disconnectivity; and thus should be considered in reservoir sedimentation 

models.  The authors suggest that several features of sediment transport phenomena should 

be considered in such a coupling to improve models.  These features are suggested to 

provide a checklist to consider model effectiveness and include: consideration of 

conservation criteria; consideration of site specific processes within the watershed 

configuration; and consideration of spatiotemporal complexity.  Even empirical models 

should at the least consider these concepts to some degree. 

Conservation criteria refers to the conservation laws controlling sediment transport 

in a watershed and includes the conservation of mass, momentum and energy.  

Conventional methodologies now typically represent conservation ideas within sediment 

transport models through the ideas of supply, shear, and transport limitations.  That is, the 

supply limitation refers to the conservation of mass idea, or lack thereof, in that sediment 

supply must be available for erosion and transport to occur.  Similarly, the shear limitation 

refers to fluid momentum, or lack thereof, needed to initiate detachment of sediment and 

cause erosion; and therefore takes on a force, or momentum, derivation.  Finally, the 

transport limitation suggests that the fluid must have sufficient power, i.e., conservation of 

energy, to keep sediment in transport through a watershed system. 

The consideration of site specific processes within the watershed configuration 

suggests that a watershed erosion model that is applied to a given site should be able to 

represent the prominent site specific processes within the watershed.  For example, if 

fluvial processes dominate the system then excessive shear should be explicitly considered.  
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This consideration can be addressed in watershed modelling through a mixture of 

conversations with watershed managers and field visits to inspect the site specific processes 

occurring. 

The consideration of spatiotemporal complexity is perhaps somewhat specific to 

the advancement sought after in this research, but nevertheless the authors highlight its 

importance.  The spatial resolution of the watershed configuration should be explicitly 

considered, if possible, in order that the spatial variability of processes be ascertained.  

Further, temporal complexity associated with hydrologic events and the runoff it produces 

should be considered. 

2.9 Thesis Objectives 

The overall goal of this research was to improve watershed erosion modelling 

through coupling the dynamic sediment connectivity and (dis)connectivity concepts within 

numerical modeling to predict how sedimentation will impact water supply.  Specific 

objectives were:  

1. Develop a watershed erosion modelling framework that explicitly incorporates 

sediment connectivity and disconnectivity concepts. 

2. Develop a theoretical probability of sediment connectivity model that can 

incorporate the multiple processes impacting connectivity and (dis)connectivity. 

3. Develop a theoretical method to predict dynamic connectivity and couple it with a 

hydrologic model. 
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4. Apply the watershed erosion model within a geospatially explicit computational 

framework that includes sediment (dis)connectivity to the water supply problem in 

Kentucky USA. 
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Chapter 3 Probability of (Dis)Connectivity Model Framework and Formulation 

3.1 Probability-based Model for Sediment (Dis)Connectivity 

The probability of sediment (dis)connectivity is defined as the probability that a 

watershed or region of a watershed is connected with respect to its ability to produce and 

transport sediment laterally and longitudinally within the fluvial network (Borselli et al., 

2008). Using a probability-based model, the probability of connectivity is theorized to 

reflect the intersecting probabilities (i.e., multiplicative probabilities) of numerous sub-

components of sediment transport. In this manner, the probability of sediment 

(dis)connectivity model reflects the co-occurrence, or lack thereof, of sediment supply, 

detachment, transport, and disconnectivity via features or human interaction, as these 

processes are well known to potentially control transport (Renard et al., 1996; Fryirs et al., 

2007; Russo and Fox, 2012; Bracken et al., 2015). The probability-based model presented 

in this thesis for sediment connectivity aims to incorporate the hydrologic conditions for 

which transport may occur and therefore the energy of individual hydrologic events to 

initiate transport of sediment is explicitly included in the model. Such explicit 

representation of hydrologic events allows for representation of the temporal variability 

(i.e. dynamic nature) of sediment connectivity within a probabilistic framework and allows 

for inclusion of hydrologic connectivity within a watershed, which is expected to partially 

control some aspects of sediment connectivity (Jensco et al., 2009). Non-hydrologic 

connectivity, i.e. connectivity caused by non-fluvial processes, is also included within the 

model framework given the recent realization of its prevalence in some systems at some 

time scales (Bracken et al., 2015). Further, it is intended that the probability-based model 

of connectivity could be discretized spatially across a watershed such that as within a 
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spatially explicit sediment transport model for a watershed. Finally, the concept of 

disconnectivity (Fryirs et al., 2007, Fryirs, 2013) via morphologic features and 

anthropogenic obstacles and revetments is explicitly included into the probability-based 

modeling framework given the recent realization that buffers, barriers, and blankets can 

create sediment disconnectivity within a watershed system. 

 With the aforementioned processes in mind, Figure 3.1 shows the authors’ concept 

of a probability-based model for sediment connectivity. The intersecting probabilities of 

sediment supply, detachment, transport, and a lack of disconnectivity produce the 

probability of sediment connectivity for the watershed or region of a watershed. In Figure 

3.1, the union of both hydrologic and non-hydrologic processes are included within 

sediment detachment as well as sediment transport.  Mathematically, the probability of 

sediment connectivity, 𝑃𝑃(𝐶𝐶), can be expressed as 

 𝑃𝑃(𝐶𝐶) = 𝑃𝑃(𝑆𝑆) ∩ 𝑃𝑃(𝐷𝐷𝐻𝐻 ∪ 𝐷𝐷𝑁𝑁𝑁𝑁) ∩ 𝑃𝑃(𝑇𝑇𝐻𝐻 ∪ 𝑇𝑇𝑁𝑁𝑁𝑁) ∩ {1 − 𝑃𝑃(𝐷𝐷𝐶𝐶)}  (Eq. 3.1) 

where S denotes supply, DH is hydrologic detachment, DNH is non-hydrologic detachment, 

TH is hydrologic transport, TNH is non-hydrologic transport, and DC is disconnectivity. The 

intersections and unions of probabilities is further expressed via their multiplicative and 

summation definitions as 

 𝑃𝑃(𝐶𝐶) = {𝑃𝑃(𝑆𝑆)} × {𝑃𝑃(𝐷𝐷𝐻𝐻) + 𝑃𝑃(𝐷𝐷𝑁𝑁𝑁𝑁) − 𝑃𝑃(𝐷𝐷𝐻𝐻)𝑃𝑃(𝐷𝐷𝑁𝑁𝑁𝑁)} × {𝑃𝑃(𝑇𝑇𝐻𝐻) + 𝑃𝑃(𝑇𝑇𝑁𝑁𝑁𝑁) −

𝑃𝑃(𝑇𝑇𝐻𝐻)𝑃𝑃(𝑇𝑇𝑁𝑁𝑁𝑁)} × {1 − 𝑃𝑃(𝐷𝐷𝐶𝐶)}      (Eq. 3.2) 

In this manner, the probability of sediment connectivity can be calculated when each 

individual process-associated probability is known or can be estimated.   
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The general probability-based model shown by Equation (3.2) can be applied to a 

given region of a watershed (i.e., plot, hillslope, or low order catchment) or calculated for 

an entire watershed by using spatially explicit information across the landscape. The former 

reflects a lumped parameter estimation of the probability of sediment connectivity while 

the latter reflects a distributed watershed modeling framework. The latter has specific 

utility in sediment transport modeling because the probability of sediment connectivity 

associated with a hydrologic event for a set of distributed differential watershed areas could 

be integrated. Integration of the net watershed probability of sediment connectivity has the 

potential efficacy of providing an estimate of the active watershed area in terms of sediment 

transport when multiplied by the watershed area.   

It is intended that the multiplicative probabilities in Figure 3.1 and Equation (3.2) 

provide a general conceptual framework for the probability of sediment connectivity.  

Parameterization of the individual probability distributions will vary depending on the 

timescale of intent, the spatial scale reflecting a plot, hillslope, catchment, or entire 

watershed, the dominant sediment transport processes distributed across the upland 

landscape (e.g., mass wasting, fluvial erosion, eolian transport), and the geomorphologic 

template of the watershed coupled with anthropogenic landscape features.  In the present 

thesis and for the example illustrated in this work, the authors parameterize the probability 

of sediment connectivity by specifically considering fluvial dominated systems with the 

potential for mixed landscape features by varying a spectrum of anthropogenic disturbance, 

as detailed in Chapter 6.  At the same time, the authors keep in mind a prevalence of 

agricultural practices that might promote an unconsolidated and low cover soil surface, at 

least at some times of the annum in some portions of the watershed.  In this manner, the 
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authors’ intent for the present probability model specification is to illustrate how the 

individual probability-based components of the probability of sediment connectivity can 

be mathematically coupled within Equation (3.2) by incorporating both process-based 

formula and the physical conditions of the landscape geomorphology and anthropogenic 

disturbances. 

 It is intended for hydrologic modelling to be coupled with geospatial data and 

field disconnectivity reconnaissance to dynamically predict the probability of 

connectivity at the watershed scale at a specified time step. The probability of 

connectivity result indicates the percent of the catchment that has the potential to 

contribute sediment to the watershed outlet at a particular time step, which identifies the 

active contributing area and period as described by Ambriose (2004).  

 The probability of connectivity can then be coupled with an erosion or sediment 

transport model to predict sediment flux at the watershed outlet. Figure 3.2 summarizes 

this methodology.   
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Figure 3.1: Graphical representation of the probability of connectivity model to predict 
sediment connectivity in the uplands of watersheds 
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Figure 3.2:  Sediment flux prediction methodology 
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Chapter 4 Physiogeographic Characterization of the Study Watershed 

4.1 Kentucky River Basin Characteristics 

The Kentucky River Basin is a HUC 6 watershed (ID 051002) that drains 18,038.8 

km2 over four physiographic regions in central and southeastern Kentucky, as shown in 

Figure 4.1 (Kentucky Division of Water, 1998). The Kentucky River flows 255 miles 

northwest from the convergence of the North, Middle, and South forks of the Kentucky 

River in eastern Kentucky to the Ohio River as shown in Figure 4.2 (U.S. Geologic Survey, 

2004; USGS Kentucky Water Science Center, 2014). It serves as the main source of water 

supply for nearly 710,000 people in the state, servicing water to several major cities such 

as Lexington, Frankfort, and Versailles and 42 of the 121 counties within the state (Johnson 

and Parrish, 1999; Banks, 2014; KRA, 2016).  

4.1.1 Kentucky River Physiography, Geology, Soils, and History 

The Kentucky River Basin encompasses four of Kentucky’s nine physiographic 

regions: the Inner Bluegrass, Outer Bluegrass, Knobs, and Eastern Coal Fields. Within the 

Kentucky River Basin, topography widely ranges from approximately 3,290 feet in the 

uplands of the watershed in eastern Kentucky to approximately 420 feet at the watershed 

outlet to the Ohio River as shown in Figure 4.3 (KYAPED, 2014).  Unique topography, 

geology, and pedology control the static connectivity of the Kentucky River Basin and 

characterize each physiographic region in Kentucky, as shown in Figure 4.4, 4.5, and 4.6, 

respectively (KYAPED, 2014). The geologic, geomorphologic, and anthropogenic history 

of the Kentucky River Basin has also been chronologized to understand historic sediment 

source pathways and disconnectivities, as well as catalysts of watershed erosion and 

sedimentation.  
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4.1.1.1 Inner Bluegrass Region 

The Inner Bluegrass region is located in central Kentucky and houses several of the 

State’s major cities. Together, the Inner Bluegrass, Outer Bluegrass, and Knobs region 

make up the Bluegrass Plateau that is generally flat with rugged edges. The topography of 

the Inner Bluegrass is characterized by gently rolling hills and relatively mild slopes 

(Kentucky Department of Fish and Wildlife Resources, 2013). Steep slopes on the banks 

of the Kentucky River indicate that bank erosion may contribute to the Kentucky River’s 

sediment yield in this region. The highest elevation within the region is approximately 1000 

feet above mean sea level (MSL) while the lowest is approximately 700 feet above MSL 

according to DEMs created by Kentucky Aerial Photography and Elevation Data 

(KYAPED, 2014).  The region makes up approximately 19% of the entire Kentucky River 

Basin. 

The central portion of the Inner Bluegrass consists primarily of McAfee-Maury silt 

loam, which tends to drain well with moderately slow permeability. The soil’s depth to 

bedrock tends to be from 20 to 40 inches. Other soils within the Inner Bluegrass region are 

classified as Lowell, Nicholson, Faywood, and Fairmont series that are well-drained and 

formed from limestone residuum in watershed uplands. The depths of these soils range 

from shallow to deep depending on the series (USDA, 2006).  

The Inner Bluegrass is intensely prone to karst due to the high amount limestone 

found within the region. (Campbell, 1996; Currens et al., 2012; KGS, 2012; Newell, 2001).  

Karst can serve as a vertical and longitudinal source of disconnectivitiy within stream 

networks. Nearly 55% of Kentucky has the potential for karstic geography (Currens and 

Paylor, 2009). Within the Kentucky River Basin, 30% of the basin has at least moderate 
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potential for karst. Large amounts of underlying limestone that heavily compromise the 

bedrock in the Bluegrass Physiographic region attribute to the karstic geography. The 

dissolution of limestone particles from acidic runoff and groundwater leads to the 

formation of fissures, aquifers, sinkholes, and swallets, which can convey and store water 

and sediment (Smart and Hobbs, 1986). Figure 4.6 shows potential karstic landscapes and 

sinkhole locations in the Kentucky River Basin (Currens et al., 2012; KGS, 1998; Currens 

and Paylor, 2009). 

Stratigraphic units in the Kentucky River Basin range in age from the Late 

Ordovician period (approximately 450 million years ago) to the Middle Pennsylvanian 

period (approximately 350 million years ago). The Kentucky River Basin comprises of five 

stratigraphic units: the Ordovician System, the Silurian System, the Devonian System, the 

Mississippian System, and the Pennsylvanian System (McDowell et al. 1986). The Inner 

Bluegrass region is primarily underlain by Lexington-Limestone and shale from the 

Ordovician period. Alluvium, which is made up of clays, silts, gravels, and some fine 

sands, surrounds the Kentucky River in the northern part of the Inner Bluegrass region. 

Small amounts of Ordovician-aged siltstone can also be found in the northern- and 

southern-most parts of the region (McGrain, 1983; McDowell et al. 1986; Andrews, 2004; 

Kentucky Department of Fish and Wildlife Resources, 2013). Ordovician rocks formed 

from sediment deposition from shallow tropical seas, lagoons, and tidal flats. Calcite and 

microspar cemented sediments to form the fossiliferous limestones. These rocks were 

buried and have since been outcropped through erosive processes (McDowell et al., 1986).   

Land use in the Inner Bluegrass region consists of primarily agricultural and urban 

areas, as shown in Figure 4.8. Approximately 37% of the region consists of agricultural 
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land and 45% of the region consists of urban land, with the remaining 18% forested areas 

(NLCD, 2006). The Inner Bluegrass houses several of Kentucky’s major cities, including 

Lexington and Frankfort. Tributaries in the Kentucky River Basin often experience 

moderate to severe bank erosion due to increased peak flow rates from urbanization. Within 

the stream corridors of the Inner Bluegrass, sediment sources include stream bank erosion, 

streambed erosion, and erosion of the surficial fine-grained laminae. In the uplands of the 

Inner Bluegrass, sediment sources include construction sites, agricultural lands, and 

concentrated flow paths from roadways. The lock and dam system on the Kentucky River, 

as shown in Figure 4.9, is a major source of longitudinal disconnectivitiy in the Kentucky 

River Basin. The lock and dam system on the Kentucky River was implemented in the mid- 

to late-1800s and originally served as year-round transportation for local commerce by 

fixing the minimum stage of each pool (Johnson and Parrish, 1999). By the mid-1900s, no 

commercial navigation of the Kentucky River existed, but the lock and dam system 

remained intact for water supply purposes. Only several of the locks on the Kentucky River 

are presently functional. Dredging occurs upstream and downstream of functional locks 

due to occasional sediment build up (KRA, 2015). Six of the fourteen lock and dams on 

the Kentucky River are located in the Inner Bluegrass. 

Many researchers (Leverett, 1902; Tight, 1903; Andrews, 2004) have debated the 

historic geomorphologic configuration of the Kentucky River Basin. It is hypothesized that 

the headwaters of the Kentucky River originated in the Blue Ridge Mountains, and due to 

tectonic activity have shifted to their current location (Jillson, 1963). Geographic 

Information Systems and the mapping of fluvial deposits has led to the identification of 

paleochannels and abandoned meanders within the Basin, several of which are located 
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between kilometers 22 and 87 of the Kentucky River. Andrews (2004) mapped many of 

the abandoned meanders and paleochannels in his doctoral dissertation. Generally, the 

Kentucky River flows to the northwest at a slope of approximately 0.15 m/km. In the lower 

(downstream) zones of the Kentucky River, alluvium deposits have been mapped as wide 

as 1,500 m. In the upper (upstream) zones, alluvium deposits are only approximately 200 

m at times (Andrews, 2004). 

4.1.1.2 Outer Bluegrass Region 

The Outer Bluegrass region surrounds the Inner Bluegrass region and is 

characterized by rugged and deep valleys as compared to the Inner Bluegrass (Kentucky 

Department of Fish and Wildlife Resources, 2013). The slope of the land is slightly steeper 

in the northern portion of the region than the Inner Bluegrass. The highest portions of the 

watershed are approximately 1,100 feet above MSL in the southeastern portion of the 

region and the lowest elevations near the basin outlet are approximately 600 feet above 

MSL (KYAPED, 2014). This region makes up approximately 24% of the entire Kentucky 

River Basin.  

Soils within this region consist of primarily Lowell, Nicholson, Eden, Elk, McAfee, 

Faywood, Shelbyville, and Maury series which are generally well drained, moderately 

deep, silty loams interspersed with clay. Interbedded fragments of limestone and sandstone 

exist throughout the region. In most of the soil series, permeability is moderately slow to 

slow, which is consistent with silty loams and clayey soils. Soil hazards include landslides 

due to poor slope stability (USDA, 2006).   

Bedrock consists of primarily Ordovician-aged siltstones, shales, and limestones in 

the northern portion of the Outer Bluegrass region. Lexington Limestone is interspersed 
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throughout Garrard Siltstone and shale. Alluvium deposits are located around the banks of 

the Kentucky River. The southern portion of the Outer Bluegrass region primarily consists 

of shale and limestone. The region is subject to moderate karst potential due to the 

dissolution of limestone (Campbell, 1996; Currens et al., 2012; KGS, 2012). Silurian aged 

rocks are sparsely found at the edge of the Outer Bluegrass region in a narrow belt. These 

rocks originate from marine environments and are approximately 440 million years old. 

Primarily, the Silurian outcrop in the Kentucky River Basin consists of dolomite, shale, 

and minor amounts of limestone and chert. The dolomite and limestone are composed of 

skeletons of animals that lived in warm, shallow seas. The thickness of Silurian outcrops 

ranges from 0 to 300 feet thick (McGrain, 1983; McDowell et al. 1986; Andrews, 2004; 

Kentucky Department of Fish and Wildlife Resources, 2013). 

Land use in the Outer Bluegrass region consists of primarily agricultural and 

forested areas, as shown previously in Figure 4.8. Approximately 48% of the region 

consists of agricultural land and 45% of the region consists of forested land, with the 

remaining 7% urban areas (NLCD, 2006). Within the stream corridors of the Outer 

Bluegrass, sediment sources include stream bank erosion, streambed erosion, and erosion 

of the surficial fine-grained laminae. In the uplands of the Outer Bluegrass, sediment 

sources include construction sites, agricultural lands, concentrated flow paths from 

roadways, and deforestation (Blanford, 2017; Gumbert, 2017; Smallwood, 2017). Four of 

the fourteen lock and dams on the Kentucky River are located in the Outer Bluegrass.  

4.1.1.3 Knobs Region 

The Knobs region makes up a small portion (4%) of the Kentucky River Basin 

(KYAPED, 2014). The region gets its name from the hundreds of conical, isolated hills, 
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which separate the Eastern Coal Fields from the Bluegrass plateau. The Knobs were once 

a part of the Mississippian Plateau (also called the Eastern Pennyroyal region of Kentucky) 

and were eventually separated by stream erosion (Campbell, 1996; KGS, 2012). The Knobs 

(mostly underlain by sandstones and limestones) are less prone to erosion than the 

previously overlying siltstone and shale, resulting in their formation (Kentucky 

Department of Fish and Wildlife Resources, 2013). Elevation ranges between 600 feet to 

1,600 feet above MSL. Slopes, especially surround the conical hills can be very steep.  

Soils consists of Lowell, Faywood, Eden, Cynthiana, Shrouts, Brassfield, Beasley, 

Robertsville, Nicholson, Lawrence, Lenberg, Garmon, and Fredrick series which are well 

drained silt loams and clays on ridges and side slopes. These soils are the residuum of shale, 

siltstone, and limestone. Soil depth ranges from deep to moderately deep in most instances 

and permeability is moderately low (USDA, 2006).  

The majority of the Knobs region consists of Devonian black shales, as well as 

limestones and sandstones. Shale is typically found at the base of the knobs since it is more 

erodible than the overlying limestone and sandstone caps, which are Ordovician-age (i.e. 

over 400 million years old). Silurian, Devonian, and Mississippian limestone outcrops are 

also associated with the region. The rocks from the Mississippian period indicate extensive 

shallowing of the seas and are represented by mostly sedimentary rocks that at one point 

in time were spread across the entire state. Limestones, sandstones, and shales dominate 

the strata. The Mississippian period lasted from roughly 360 million years ago to 320 

million years ago (McGrain, 1983; McDowell et al. 1986; Andrews, 2004; Kentucky 

Department of Fish and Wildlife Resources, 2013). Karst potential throughout parts of the 
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watershed underlain by limestone is moderate (Campbell, 1996; Currens et al., 2012; KGS, 

2012). 

Land use in the Knobs region consists of primarily agricultural and forested areas, 

as shown previously in Figure 4.8. Approximately 49% of the region consists of 

agricultural land and 41% of the region consists of forested land, with the remaining 9% 

urban areas (NLCD, 2006). Within the stream corridors of the Knobs region, sediment 

sources include stream bank erosion, streambed erosion, and erosion of the surficial fine-

grained laminae. In the uplands of the Knobs region, sediment sources include construction 

sites, agricultural lands, concentrated flow paths from roadways, and deforestation 

(Blanford, 2017; Gumbert, 2017; Smallwood, 2017). One of the fourteen lock and dams 

on the Kentucky River are located in the Outer Bluegrass.  

4.1.1.4 Eastern Coal Fields Region 

The Eastern Coal Fields region, located on the Cumberland Plateau, makes up the 

southern 52% of the Kentucky River Basin. The elevation of the Eastern Coal Fields ranges 

between approximately 1,000 feet above MSL in the lowest parts of the region and 3,200 

feet above MSL in the uplands (KYAPED, 2014). The region is characterized by steep, 

narrow ridges and narrow valleys. Prior to human disturbance and mining, the highest 

elevation in the state was 4,145 feet above MSL located in the Eastern Coal Fields (Newell, 

2001). Slopes in this region are the steepest in the state. Pine Mountain, in the eastern most 

part of the region, is a 125-mile long mountain range that formed around 230 million years 

ago (Kentucky Department of Fish and Wildlife Resources, 2013).  

Major soil series within the region are Steinburg, Shelocta, Gilpin, Latham, 

Shrouts, and Rigley silt loams and clays. These soils form in very steep areas and are 
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typically deep to very deep. In most instances, the soil is well drained and moderately 

permeable. The soils are the residuum of shale, siltstone, sandstone, or colluvium (USDA, 

2006). 

Pennsylvanian rocks comprise the majority of the geology of the Eastern Coal 

Fields. Pennsylvanian strata compose nearly 50% of the Kentucky River Basin, located 

east of the Knobs region in the Basin. This deposit is part of the Appalachian basin, and is 

characterized by coal seams buried beneath the Cumberland Plateau. Some researchers 

believe that Pennsylvanian strata were once continuously deposited across central 

Kentucky. However, it is believed that large portions of the strata have been removed 

through erosive processes. Pennsylvanian rocks are predominantly sandstone, siltstone, 

and shale. Marine shale and limestone are also widespread throughout the region. This 

indicates that during the formation of Pennsylvanian deposits, swamps, shallow bays, and 

estuaries likely covered Kentucky. The deposition of the strata resulted from piedmont, 

alluvial, and costal-plain environments spread across the state during the Pennsylvanian 

age. The origin of the Appalachian Mountains found in the eastern portion of the Kentucky 

River Basin date back to nearly 480 million years ago. During the Ordovician period, an 

oceanic tectonic plate began to submerge beneath the North American tectonic plate thus 

forcing land upwards. The subduction of the oceanic plate lead to the formation of 

volcanoes – thus warping previously deposited sedimentary rock. Several other mountain 

building series existed following the Ordovician period until the Pennsylvanian period as 

tectonic plates continued to submerge beneath the North American tectonic plate. During 

the Mesozoic period, erosion and weathering began to wear the mountains away (McGrain, 

1983; McDowell et al. 1986; Andrews, 2004).  
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Moderate karst potential exists in the northwest portion of the Eastern Coal Fields, 

but is not as concentrated as the other physiographic regions (Campbell, 1996; Currens, 

1998; KGS, 1998; Newell, 2001). Devonian strata is also found in the eastern most portion 

of the Kentucky River Basin and comprises of limestones, dolostones, and a deposit of 

shale ranging in thickness from 4 feet to over 1,000 feet. Devonian rocks of the Kentucky 

River Basin are assumed to have accumulated in a gradually deepening sea. Organic-rich 

muds were deposited from this sea that lead to the formation of the thick shale layer. This 

period spanned roughly 420 to 360 million years ago (McGrain, 1983; McDowell et al. 

1986; Andrews, 2004; Kentucky Department of Fish and Wildlife Resources, 2013). 

Land use in the Eastern Coal Fields region consists of primarily forested and 

agricultural areas, as shown previously in Figure 4.8. Approximately 78% of the region 

consists of forested land and 14% of the region consists of agricultural land, with the 

remaining 8% urban areas (NLCD, 2006). Within the stream corridors of the Eastern Coal 

Fields region, sediment sources include stream bank erosion, streambed erosion, and 

erosion of the surficial fine-grained laminae. In the uplands of the Eastern Coal Fields 

region, sediment sources include construction sites, agricultural lands, concentrated flow 

paths from roadways, deforestation, and mining processes (Blanford, 2017; Gumbert, 

2017; Smallwood, 2017). Three of the fourteen lock and dams on the Kentucky River are 

located in the Outer Bluegrass. 

4.1.3 Kentucky River Basin Climate 

 The Kentucky River Basin’s climate is classified as humid subtropical (Ulack et 

al., 1998). According to the National Oceanic and Atmospheric Administration (NOAA), 

on average, the Basin receives 45 to 50 inches (1140 to 1270 mm) of precipitation, 10 to 
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12 inches (250 mm to 300 mm) of which are snow. The average annual temperature ranges 

between 54°F to 58°F (12.2°C to 14.5°C). The minimum average temperature is 

approximately 32.9°F (0.5°C) in January and the maximum average temperature is 

approximately 76.2°F (24.5°C) in July.  

4.2 Study Watershed 

The probability of (dis)connectivity model was applied to only a portion of the 

Kentucky River Basin due to the availability of sediment flux data and to reduce 

computation complexity of the numerical model. The Upper South Elkhorn watershed 

(65.1 km2), located in the Inner Bluegrass physiographic region of Kentucky near the city 

of Lexington and the University of Kentucky is shown in Figure 4.10.  The Upper South 

Elkhorn is a mixed land use watershed, consisting of primarily agricultural lands (55%) 

and urban areas (45%) as shown in Figure 4.11 (NLCD, 2006).  The Upper South Elkhorn 

watershed was chosen for model application because of (i) the dominance of instream and 

upland sediment transport processes contributing to sediment flux; (ii) past studies 

conducted on the watershed including sediment source tracing via fingerprinting (Davis, 

2008), sediment transport modeling (Russo, 2009), instream organic carbon fate and 

transport (Ford, 2011), and surficial fine-grained laminae control on stream carbon and 

nitrogen cycles (Ford, 2014); (iii) on-going data collection and research conducted by the 

University of Kentucky, Lexington-Fayette Urban County Government (LFUCG), and 

USGS; and (iv) the proximity of the watershed to the University of Kentucky.      

4.2.1 Study Watershed Physiography  

 The South Elkhorn Creek is a lowland stream with an initial elevation of 297.3 

meters above MSL. At the watershed outlet, the elevation of the channel is approximately 
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254.4 meters above MSL. The stream drops nearly 42.7 meters over the 16.9-kilometer 

path from the headwaters to the watershed outlet; thus, the slope of the channel is 

approximately 0.00254 m/m. The South Elkhorn Creek primarily conveys flow year-round. 

The channel consists of bedrock, weeds, sands, fine sediments, and stones. The Upper 

South Elkhorn watershed is located in the Inner Bluegrass region of Kentucky, which is 

characterized by gently rolling hills and relatively mild slopes.  

 Headwaters of the South Elkhorn Creek originate in southwestern Lexington, 

within urban areas. There is one active United States Geologic Survey (USGS) gage 

located near the watershed outlet. Discharge data is available between 10-01-2007 until the 

present. Flowrate, precipitation, and turbidity data have been collected since 10-18-2015 

until the present. The flowrate, as measured at the USGS gaging site, is less than 

approximately 0.06 CMS during low flows, between 0.28 CMS during normal conditions, 

and greater than 2.26 CMS during high flows. 

 The National Oceanic and Atmospheric Administration (NOAA) maintain a 

precipitation and temperature monitoring station at the Lexington Bluegrass Airport, which 

is northeast of the watershed. Data has been collected and published between 1981 and 

2010, recording the temperature, rainfall, and snowfall averages. Temperatures range 

between, on average, 32.9°F (0.5°C) in January to 76.2°F (24.5°C) in July. The average 

yearly rainfall for this region is approximately 45.2 inches (1148 mm). The average yearly 

snowfall for this region is 13.0 inches (330 mm). The Upper South Elkhorn’s climate is 

classified as humid subtropical (Ulack et al., 1998).  

 Bluegrass-Murray silt loams primarily make up the South Elkhorn watershed’s soil 

matrix. Bluegrass-Murray silt loams are categorized under the hydrologic soil group “B”, 
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are very deep, well drained, and have moderate permeability (NRCS, 2011). The large 

amounts of underlying Lexington Limestone that heavily compromise the bedrock in the 

Upper South Elkhorn watershed attribute to a moderate karst potential (Currens, 1998).   

4.2.2 Study Watershed Sediment Transport Processes  

 Sediment particles are sourced from various agricultural and urban land uses within 

the Upper South Elkhorn watershed. Within the stream corridor, primary sediment 

transport processes include streambank erosion, streambed erosion, surficial fine-grained 

laminae erosion, and mass wasting (Russo and Fox, 2012). Based on visual observation, 

eroding streambanks are prominent throughout the watershed and are a primary source of 

instream erosion. Urbanization in the Upper South Elkhorn watershed is a suspected cause 

of the exacerbated streambank erosion (Russo, 2009). Upland erosion production occurs 

primarily through rill erosion, ephemeral gully erosion, and concentrated flow pathways, 

while diffusional erosion processes (i.e. sheet and interrill erosion) are believed to provide 

a minor contribution to the overall sediment flux at the watershed outlet (Blanford, 2017; 

Gumbert, 2017; Smallwood, 2017). Livestock and construction sites in the uplands 

exacerbate the detachment rates of sediment particles through the removal of protective 

vegetation and exposure to excessive eolian and fluvial shear stresses (Evans, 2017). The 

Upper South Elkhorn watershed is also characterized by long, flat floodplains adjacent to 

the stream network. Based on studies conducted by Fryirs et al., (2007) and the authors’ 

observations from field visits, these floodplains are suspected to force sediment to fall out 

of suspension and be deposited prior to entering the stream network, causing sediment 

disconnectivitiy. Connectivity to the floodplains generally occurs one to two times per year 

when bankfull flow is breached and the floodplains are inundated.  
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Figure 4.1: Kentucky River physiographic regions 
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Figure 4.2: Kentucky River Basin location 
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Figure 4.3: Kentucky River Basin elevation (KYAPED, 2014) 
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Figure 4.4: Kentucky River Basin slope (KYAPED, 2014) 
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Figure 4.5: Kentucky River Basin geology (Kentucky Geologic Survey, 2012) 
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Figure 4.6: Kentucky River Basin soils (USDA, 2016) 
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Figure 4.7: Kentucky River Basin karstic landscapes (Currens et al., 2012) 
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Figure 4.8: Kentucky River Basin land use 
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Figure 4.9: Kentucky River Basin lock and dam system (KRA, 2016) 
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Figure 4.10: Study watershed location within the Kentucky River Basin 
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Figure 4.11: Study watershed land use 
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Chapter 5 Watershed Assessment and Visualization of Erosion and Sedimentation 

(WAVES) Protocol 

5.1 WAVES Protocol Introduction and Objectives  

 The Watershed Assessment and Visualization of Erosion and Sedimentation 

(WAVES) Protocol is a comprehensive field assessment methodology that was designed 

to qualitatively elucidate the perceptible conditions of a watershed and the overall 

governing processes controlling watershed sedimentation and sediment connectivity in the 

field. The study of sedimentation in watersheds is particularly important because of the 

harmful impact sediments can have on aquatic life, algae, civil infrastructure (e.g. 

reservoirs), water supply, and water quality (Wood and Armitage, 1997; FISRWG, 1998; 

USEPA, 2004; Morris and Fan, 1998; USEPA, 1999; Zappou, 2001). Sediment 

(dis)connectivity, defined as the detachment and transport of sediment from source to sink 

between geomorphic zones, controls sediment transport rates but is rarely the focus of 

watershed field assessments. As mentioned, the quantification of watershed sedimentation 

has proven to be precarious over years due to what Walling (1983) has defined as the 

sediment delivery problem. Prior to formulating and applying a connectivity model to 

predict sediment flux, the author’s first saw importance in gaining field-based knowledge 

of the conditions of the watershed: which is the main purpose of the WAVES Protocol. 

The utility of gaining field-based knowledge of the catchment’s connectivity has been 

recognized by many researchers (e.g. Brierly and Fryirs, 2005; Fryirs et al., 2007; Borselli 

et al., 2008; Lexartza-Artza and Wainwright, 2009).  

The overall objective of WAVES is threefold: (1) to qualitatively understand 

hydrological and sedimentological processes occurring within the watershed (i.e. sheet, 
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rill, and gully erosion, instream sediment storage, channel morphology, etc.); (2) to obtain 

field-based knowledge of the watershed’s (dis)connectivity; and (3) to identify sediment 

sources, sinks, and pathways in the field (such as erosional scars, point bars, and tributaries, 

respectively). The collection of field data allowed for a comprehensive understanding of 

the geospatial coverages of erosion sources, sinks, and sediment (dis)connectivity. The 

post-processing of data collected from the WAVES Protocol lead to an assessment of the 

overall lateral disconnectivity of the watershed, as is outlined in Chapter 6 of this thesis.  

5.2 Method Development 

With these objectives in mind, the WAVES method was developed by the authors 

through the review of contemporary methods to visually assess watersheds and streams, 

consulting methods pertinent to the physiographic region of the Inner Bluegrass, and 

literature on sediment connectivity to tailor an assessment towards sediment transport 

processes within the watershed. Aspects of the following five sources were used as a basis 

for the methodology of the WAVES Protocol: (1) the Stream Visual Assessment Protocol 

(SVAP) Version 2, developed as a part of the National Biology Handbook by the Natural 

Resources Conservation Service (NRCS, 2009), which provides a basic level of stream 

health evaluation; (2) the Bank Erosion Hazard Index (BEHI), which evaluates the 

conditions of stream banks, developed by David Rosgen of Wildland Hydrology, INC. 

(Rosgen, 2001); (3) the Rapid Bioassessment Protocol (RBP), developed to evaluate 

aquatic organism health by the United States Environmental Protection Agency (USEPA, 

1999); (4) the Visual Stream Assessment for the South Elkhorn Watershed, prepared for the 

Lexington-Fayette Urban County Government (LFUCG) of Lexington, Kentucky by Third 

Rock Consultants, LLC (Third Rock Consultants, 2006); and (5) literature and research 
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conducted by Fryirs et al. (2007) for the insight gained relative to watershed sediment 

connectivity. Important definitions pertinent to the WAVES Protocol are shown in Table 

5.1. The resulting WAVES Protocol sheets used to complete the visual assessment are 

shown in Figure 5.1.  

5.3 Method Description 

Methods for the completion of the WAVES Protocol are broken into three phases: 

(1) prior to the site visit, (2) during the site visit, and (3) post-site visit. Each stage of the 

assessment involves preparation and special procedures. This section outlines the 

developed and accepted methods involved in the WAVES Protocol. 

5.3.1 Prior to the Site Visit 

Several tasks were completed prior to visiting the field with the intention of 

completing the WAVES Protocol. Prior to the visit, researchers created maps in ArcGIS 

showing the stream corridor and surrounding land use/land cover, as well as tributaries 

with contributing areas greater than approximately 0.5 km2. Aerial imagery and Digital 

Elevation Model (DEM) analyses were used to delineate stream networks and identify land 

use/land cover. These maps were used to identify reaches assessed during each site visit, 

and to spatially identify features of the watershed worth noting. Prior to the visit, 

researchers predetermined access points to the stream via ArcMap and other mapping 

services. Access points were chosen based on their proximity to nearby roads that may run 

parallel to or intersect the stream corridor. Before departure for the field visit, researchers 

prepared the WAVES binders, which contain maps of the stream, copies of the WAVES 

Protocol sheets, and extra pens and paper. Finally, before departure, researchers ensured 

that any relevant and necessary equipment and materials were available and brought to the 
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field. Potential useful equipment to complete the WAVES Protocol include a GPS 

connected digital camera, sufficient assessment protocol sheets, surveying rod(s), pencil 

and extra paper, and prepared maps of the stream. If possible, researchers should take 

preliminary trips to the field to walk and divide the stream into reaches (i.e. 

geomorphologically similar lengths of the stream). The start and end points of each reach 

should be recorded on the field maps brought in the WAVES binder. These points can be 

mapped through the geolocation features of a smart phone. Note that the WAVES Protocol 

sheets should not be filled out upon preliminary visits. 

5.3.2 During the Site Visit 

Five general parameters are assessed through the WAVES Protocol for subreaches: 

(1) connectivity, (2) streambanks and floodplains, (3) streambed, (4) upland land use, and 

(5) miscellaneous qualities. These parameters were chosen based upon their suspected 

influence on sediment delivery at the watershed outlet. Connectivity is assessed by 

identifying source to sink pathways of sediment and impedances which may cause 

disconnectivity within the subreach. The condition of the streambanks and floodplains are 

assessed by observing the density of vegetation surrounding the stream, the structure of the 

banks, and human infrastructure which may impact sediment transport. The streambed is 

assessed through the determination of bed bathymetry, morphology, instream sediment 

storage, and the type of sediment stored. Upland land use conditions are assessed through 

identification of the type of land use, evidence of historic upland erosion, and upland 

human interferences that may accelerate sediment transport. Finally, miscellaneous aspects 

of the subreach that may further contribute to or yield evidence of sediment transport are 

assessed through the identification of karst features, water quality, and ecosystem quality. 
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It should be noted that the WAVES Protocol requires a minimum of two researchers 

to be present and actively assessing the stream condition for each site visit. This is to help 

eliminate subjectivity when filling out the WAVES Protocol sheets and for safety purposes. 

During each site visit, researchers arrived at the predetermined access point with WAVES 

binders, camera, surveying rods, and other necessary materials. Starting at the downstream 

end of each reach, researchers walked upstream and observed the qualities of the subreach, 

keeping in mind the five aforementioned parameters. While assessing each reach, 

geolocated photographs were taken of many features within the stream corridor. Images 

were taken of (1) the left bank and right bank angle and height at the downstream end, 

middle, and upstream end of the reach, or wherever significant alterations occurred; (2) 

hotspots of bank erosion throughout the reach, as well as in-stream sediment storage (i.e. 

by placing a surveying rod into the sediment); (3) bed material at the beginning, middle, 

and end of the storage zone; (4) any and all inflowing tributaries and outfalls. Where 

possible, researchers also walked tributaries and noted bank angles, heights, bed material, 

erosional hotspots, and upstream land use/land cover. Pictures were also taken of sources 

of (dis)connectivity within the stream: i.e. check dams, bed rock outcrops, point bars, 

depositional zones, armoring zones, connected hillslopes, floodplains, in-stream features 

(riffles, runs, and pools) as well as upland features (land use, human or livestock 

interference, erosion).  At the end of the reach, researchers filled out the WAVES Protocol 

sheets. This was done individually to minimize subjectivity. While completing the 

assessment sheets, researchers noted the features separating one reach from another on the 

Intermediate Reach form. Unique features of the reach, weather, flow rate, and other 
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conditions were noted on this form as well. This process was completed for each reach 

assessed during each site visit. 

5.3.3 Post Site Visit 

After completing the site visit, reach information was post-processed and stored for 

further use. Photos and additional data were uploaded into an ArcGIS database. 

Assessment sheets were organized and safely stored for future reference. Data was post-

processed after completing the visual assessment in the field.  

5.4 Data Post Processing 

5.4.1 Conglomerate Scoring Procedure 

Further refinement of the data collected in the field was necessary because of the 

subjective nature of the WAVES Protocol. Data were manipulated using a weighting and 

averaging technique developed by the authors to qualitatively score several watershed 

sedimentation parameters. Scored parameters included erosion, deposition, and lateral and 

longitudinal (dis)connectivity. The resulting conglomerate numerical score is a qualitative 

means of comparing prevalent watershed sedimentation processes in each subreach. These 

conglomerate scores were ultimately used in the development of hotness/coolness maps, 

which provide a qualitative means of displaying the results of the data collected in the field.  

5.4.1.1 Erosion 

 The qualitative conglomerate score of erosion severity of subreaches is shown in 

Equation (5.1) as 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ∑(𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∗(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡)
∑(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡)

       (Eq. 5.1) 
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where Erosion is the qualitative erosion severity score, avg extent is the average extent of 

erosion within the reach (rated subjectively from 1-10), avg density represents the severity 

of erosion in the subreach (rated subjectively from 1-10), and value weight is a qualitative 

weighting coefficient based on the type of erosion developed by the authors. The average 

extent and density of erosion were calculated using the arithmetic means of the scores from 

the WAVES Protocol sheets. 

5.4.1.2 Deposition 

The conglomerate score assessing the severity of deposition for a subreach is shown 

in Equation (5.2) as 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  ∑�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
10

 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡�  (Eq. 5.2) 

where Deposition is the qualitative deposition severity score, longitudinal extent is the 

longitudinal extent of deposition per subreach as qualitatively determined from the 

WAVES Protocol (rated subjectively from 1-10), lateral extent is the lateral extent of 

deposition per subreach (rated subjectively from 1-10), weight is the qualitative weighting 

coefficient based on the type of deposition type and severity developed by the authors, and 

the value of 10 is a normalization parameter so the longitudinal and lateral extents of 

deposition can be related. 

5.4.1.3 Lateral (Dis)connectivity 

 The presence of buffers within subreaches was used to qualitatively determine 

lateral (dis)connectivity. In this particular watershed, floodplains, farm dams, and terraces 

were identified as the primary lateral disconnecting features in the Upper South Elkhorn 

basin. Therefore, the conglomerate score for lateral (dis)connectivity was simply a score 
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(1-10) representing the extent of lateral disconnectivities found in a particular sub-reach. 

If no disconnectivites were observed, the subreach was given a lateral disconnectivity score 

of zero. If there was more than one score given for floodplains (for example, the floodplain 

extent was different on the left side of the bank than on the right side), a simple arithmetic 

average was used to produce the lateral disconnectivity score. 

5.4.1.4 Longitudinal (Dis)connectivity 

 The longitudinal disconnectivity conglomerate scoring is based upon observed 

barriers and blankets, as well as the deposition score calculated in Equation 5.2. The overall 

equation developed for longitudinal disconnectivity is as shown as 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
2

    (Eq. 5.3) 

where Long. Disconnectivity is the conglomerate score for longitudinal disconnectivity per 

sub-reach, BB Avg is the average score for the barriers and blankets within a subreach, and 

Deposition is the conglomerate score for deposition, as previously calculated in Equation 

5.2. The average score for barriers and blankets is simply the average of the extent of all 

recorded barriers and blankets without including any values for floodplains within the 

calculation. This average was calculated first, then paired with the deposition score from 

Equation 5.2 to determine an overall arithmetic average for longitudinal disconnectivity as 

a function of both attributes.  

5.4.2 Field Assessment Analysis 

The authors recognize the subjectivity of the WAVES Protocol. In order to 

eliminate some subjectivity, multiple researchers individually scored each parameter of the 

subreaches and the average of the researchers’ scores was used to create the conglomerate 
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hotspot maps for the major parameters assessed in WAVES. The main utility of the 

WAVES Protocol is to understand qualitatively where erosion, deposition, and 

(dis)connectivity are most pronounced to help infer the governing processes of watershed 

sedimentation prior to creating a model to assess connectivity and sediment flux. This can 

later serve as a qualitative validation to a connectivity model. Another utility of this 

Protocol is that disconnectivity features, such as floodplains, were geospatially mapped, 

and thus can be parameterized in a connectivity model with a high degree of certainty. 

Finally, the geospatial database of geo-located photographs serves as useful tool for 

performing other types of visual assessments without having to go into the field. For 

example, it was intended that the multitude of pictures taken should allow researchers to 

perform an analysis like the BEHI without having to go back into the field. 

The hotspot maps for erosion, deposition, and lateral disconnectivities can be seen 

in Figures 5.2a through 5.2d. The color of each reach indicates the severity of the parameter 

in the subreach. For example, in Figure 5.2a, red suggests that a high amount of erosion 

and green suggests that a low amount of erosion were observed at particular location. A 

red subreach in Figure 5.2b indicates that intense amounts of longitudinal deposition were 

observed in that particular location. A red subreach in Figure 5.2c indicates that the reach 

was suspected to be highly disconnected due to lateral disconnectivities. Finally, a red 

subreach in Figure 5.2d indicates that the reach was suspected to be highly disconnected 

due to longitudinal disconnectivities.  
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Table 5.1: WAVES Definitions 

 
Term Definition 
Active Floodplain Floodplain that is well connected to the channel 

and regularly inundated 
Agriculture Land used for the production of crops and/or 

rearing of livestock; farm land 
Algae Aquatic primary producers 
Available Cover Logs, boulders, swallets that may be used as 

potential refuge for aquatic life 
Bank Angle Slope of the incline connecting the streambed to 

the floodplain 
Bank Erosion The abrasion of stream banks, typically due to 

fluvial forces 
Bank Stability A stream bank's capacity to transport water and 

sediments without failure 
Bankfull Discharge The flowrate at which water will begin to spill 

onto a channel's floodplains; this typically occurs 
every 1-2 years 

Barrier A blockage disrupting longitudinal connectivity 
within a catchment 

Baseflow Streamflow resulting from natural storage of 
precipitation; flow is maintained because of 
baseflow even when there has been no 
precipitation 

Bed Rock Solid rock underlying soils and alluvium 
Bed Width The width of the bottom of the stream; i.e. the 

lateral confine of water within the channel 
Benthos Organisms living within the organic material on 

the bed of the stream channel 
Blanket A blockage disrupting vertical connectivity 

within a catchment 
Buffer A blockage disrupting lateral connectivity within 

a catchment 
Buffer Strip Vegetative coverage with efficient means of 

filtering runoff prior to entering streams 
Channel The lateral and longitudinal confines of 

streamflow 
Channel Depth The vertical distance from the channel bed to the 

top of the stream bank 
Channel Dimensions The top and bottom width, depth, and slope of the 

medium conveying water 
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Channelization The process of straightening a channel with the 
purpose of increasing flow velocity and 
decreasing sinuosity 

Check Dam A small dam constructed across a tributary, ditch, 
or stream, with the purpose of counteracting 
erosion and reducing stream velocity 

Cobble  A rock within a stream having a diameter greater 
than approximately 2.5 inches and less than 10 
inches 

Connectivity The physical transfer of sediment from a source 
to a sink controlled by sediment transport 
processes 

Coverage The lateral extent within a streambed which an 
object is present 

Culvert A conduit conveying water from one side of a 
road or railroad to another 

Dam A hydraulic structure used to retain water for 
flood control, water supply, and hydroelectric 
production 

Deep Sediment Layer Deep deposit of sediment found along the bed of 
a stream 

Disconnected Floodplain Flat surface adjacent to the channel which may 
rarely become inundated 

Embeddedness The degree which an cobbles/gravels are 
surrounded by fine sediment within the stream 

Erosion Scar Exposed soil elucidating locations of historic 
erosion 

Extent The longitudinal span of a substance along the 
stream corridor 

Fine Sediment Sediments with very small diameters (< 0.074 
mm) 

Floodplain Land adjacent to the channel where water will 
spill onto once the channel's capacity is breached 

Fluvial Morphology The alteration of a landscape due to the water in a 
stream 

Gabion Basket Wired-cages that hold rocks with the purpose of 
stabilizing stream banks 

Grain Size The diameter of the sediments found within the 
streambed 

Gravel Rocks, smaller than cobbles, with a diameter 
between 0.825 to 2.5 inches 

Gully Erosion A form of soil erosion resulting from the 
confluence of rills and formed by surface water 
runoff 
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Habitat An ecological area home to certain flora and 
fauna 

Headcut An actively eroding section of stream noted by an 
abrupt vertical drop in gradient. Typically 
headcuts can migrate upstream over time 

Incision The process of lowering the bed of a channel 
from its original elevation with respect to its 
floodplains 

Intake  A device used to abstract water from a water 
body 

Irrigation A method of regularly providing water to 
agricultural lands 

Irrigation Ditch/Channel A canal that is built to carry water from its source 
to an agricultural land 

Karst Lands underlain by eroded limestone 
characterized by sink holes, springs, caves, and 
fissures 

Land Use  The characterization of a land by the 
arrangements and activities undertaken on it 

Detritus Material from vegetation in the uplands/riparian 
zones of a watershed that enter the stream 
corridor; i.e. leaves, branches, bark 

 Land Management Methods enacted to lessen the impact humans 
have on surrounding ecosystems 

Outfall The location where a drain, sewer, or pipe 
empties into another waterbody 

Pasture Land used for the production of hay and suitable 
for the grazing livestock 

Pool The longitudinal area in the riffle-run-pool 
sequence with the deepest, slowest moving water 

Riffle A shallow area of a stream where water moves 
quickly and produces surface agitation 

Rill Erosion The formation of concentrated shallow channels 
via soil removal 

Rip Rap Large, angular rocks used to prevent erosion 
Riparian Buffer A vegetated area with efficient means of filtering 

runoff and stabilizing stream banks 
Root Density The distribution, thickness, quantity, and length 

of roots along a stream bank 
Root Depth The depth of roots along a stream bank 
Roughness The coarseness of the bed, bank, and floodplain 

of a stream 
Row Crop Land use designated for the production of crops 

planted in rows 
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Run The transition between a riffle and pool 
designated by fast moving water and little surface 
disturbance 

Sand Sediment smaller than gravel but larger than fine 
particles 

Sand/Sediment Bar A deposit where sediment is actively stored 
within a channel 

Sediment Sheet A widespread sediment deposit disconnecting 
subsurface sediments 

Sediment Slug  A sediment deposit that laterally covers an entire 
channel bed causing aggradation 

Sediment Storage A location of stored sediment within a watershed 
which may or may not actively contribute to a 
catchment's sediment yield 

Shade/Coverage The degree to which a stream is shaded by 
surrounding trees and vegetation 

Shrubs Plants and bushes found within riparian zones 
Sink Hole A hollow area created from the erosion of lime 

stone via water, acting as a conduit for water to 
travel 

Species Density The quantity of a certain species found within a 
reach or plot of land 

Species Diversity The quantity of different species found within a 
reach or plot of land 

Spring The emergence of water from an underground 
aquifer 

Stormwater Outlet The location where a stormsewer system empties 
into a water body 

Stream Corridor A stream and its floodplains 
Stream Restoration The restoration of a water way to combat erosion 

and water quality degradation 
Surface Fine Grained 
Laminae 

Fine sediment layer associated with the bed 
surface of a stream approximately 5 mm thick 
and easily erodible 

Swallet  An opening in the ground that transports surface 
water to the subsurface 

Terrace The remnant of historic floodplains that are 
formed by downcutting of streams over time 

Tile Drain Outlet emptying into a waterbody that drains 
excess water from soil, especially in agricultural 
areas 

Turbidity The cloudiness of water due to suspended 
sediments, algae, detritus, and other particles 

Urban - Commercial Land use comprising primarily of building 
offices, shops, and restaurants 
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Urban - Industrial  Land use comprising primarily of industrial 
spaces, i.e. manufacturing 

Urban - Residential Land use comprising primarily of residential 
neighborhoods and houses 

Water Quality The condition of water with respect to chemical, 
physical, and biological characteristics 

Watershed The cumulative land area draining to an outlet or 
pour point 
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Figure 5.1: WAVES Protocol Sheets including: (a) Field sheet key and (b) Acronyms 
and WAVES Protocol Field Sheets 

(a) Field Sheet Key 

The following key shows the colors of different parameters which are to be assessed in the 
field.  

Color 
Field Assessment 

Parameter 
 Sediment Connectivity 

 
Stream Banks and 

Floodplains 
 Stream Bed 
 Upland Land Use 
 Miscellaneous 
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(b) Acronyms and WAVES Protocol Field Sheets  
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(b) Acronyms and WAVES Protocol Field Sheets (Continued) 
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 (b) Acronyms and WAVES Protocol Field Sheets (Continued) 
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(b) Acronyms and WAVES Protocol Field Sheets (Continued) 

 



69 
 

Figure 5.2: WAVES post-processing including: (a) instream erosion hotspot map, (b) 
instream sedimentation hotspot map, (c) lateral disconnectivity hotspot map, and (d) 
longitudinal disconnectivity hotspot map 

(a) Instream erosion hotspot map 

 

(b) Instream sedimentation hotspot map 
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(c) Lateral disconnectivity hotspot map 

 

(d) Longitudinal disconnectivity hotspot map 
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Chapter 6 Probability of Connectivity and Erosion Model Set Up, Input Data, and 

Parameterization 

6.1 Probability of Sediment Connectivity Model Set Up and Input Data 

 The probability of sediment connectivity model coupled with the upland erosion 

model was applied to the Upper South Elkhorn watershed. Model inputs include geospatial 

data, disconnectivities as assessed in the field and via a geographic information system 

(GIS), and hydrologic modeling outputs. The upland erosion model was applied only to 

the active contributing area at a particular time step as predicted by the probability of 

sediment connectivity model. Figure 6.1 summarizes the application of the probability of 

sediment connectivity model and the upland erosion model.  

6.1.1 Geospatial Input Data 

 Geospatial data used to determine the probability of connectivity model include 

land use data, soil type data, and a digital elevation model (DEM). These data were used 

both as an input to the Soil and Water Assessment Tool (SWAT) to determine hydrologic 

parameters of the watershed at a daily time step and as a surrogate of the energy gradient 

of runoff during storm events to predict fluvial shear stress. The land use map, as shown 

previously in Figure 4.11, is coupled with soil survey data, as determined by the United 

States Department of Agriculture (USDA), Natural Resources Conservation Service 

(NRCS), as shown in Figure 6.2, to predict runoff during storm events.  

 The resolution of the DEM used to predict the Probability of Connectivity is 5 feet 

by 5 feet and was created by the Kentucky Aerial Photography and Elevation Data Program 

(KYAPED) in 2014 (KYAPED, 2014). This is shown in Figure 6.3.  
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6.1.2 Field Disconnectivity Assessment Input Data 

 Disconnectivities, such as buffers, barriers, and blankets, impede sediment 

movement in the lateral, longitudinal, and vertical directions, respectively (Fryirs et al., 

2007) and decouple land from contributing to the sediment cascade. In order to determine 

disconnectivities in the watershed, a comprehensive, in-house watershed visual assessment 

protocol was developed. The WAVES Protocol was designed to qualitatively elucidate the 

perceptible conditions of a watershed and the overall governing processes controlling 

watershed sedimentation in the field. See Chapter 5 for more information on the WAVES 

Protocol. One of the main objectives of the WAVES Protocol is to obtain field-based 

knowledge of lateral and longitudinal disconnectivitiy within the watershed. Lateral 

connectivity, which measures the connectedness of uplands and hillslopes to the stream 

network (Fryirs et al., 2007), was evaluated by assessing the extent of buffers such as 

floodplains, terraces, and dams at the reach scale. Geolocated photographs denoted the 

extent of each buffer and then were loaded into ArcMap in post-processing for further 

review.   

 Lateral disconnectivities are assumed to cause all suspended sediment to deposit 

prior to entering the stream network. Therefore, all lands upstream of buffers are also 

assumed to be disconnected from the stream network, thus not contributing to sediment 

flux at the watershed outlet. Disconnected lands were digitized by delineating buffers 

through the WAVES Protocol and remote sensing techniques. Next, the delineated buffer 

features were converted into a series of approximately 5,200 points for which the upstream 

contributing area would be determined through ArcHydro, which is a set of data models 

that delineate and characterize watersheds in ArcMap (ESRI, 2013). The Batch watershed 
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delineation tool, made available by ArcHydro, determined the upstream area of each point. 

As discussed by Friyrs et al. (2007), lateral disconnections may become connected when 

floodplains are inundated. However, for this analysis, buffers are assumed to always 

prevent sediment from entering the stream network. Laterally disconnected land is shown 

in Figure 6.4. 

6.1.3 Hydrologic Modeling Input Data 

 Results from the Soil and Water Assessment Tool (SWAT) predict subcomponents 

of the Probability of Sediment Connectivity. SWAT is a lumped-parameter, physically 

based hydrologic model developed for the watershed or river basin scale.  SWAT can be 

run at monthly, daily, and sub-daily time steps; however, the model is not designed to 

simulate detailed flood routing at the event-scale. Inputs to SWAT include land cover data, 

soil data, topology, climatology data, and watershed routing information (Neitsch et al., 

2011). Land cover data is available from the USGS’s National Land Cover Dataset 

(NLCD) starting in 2006. Soil data is available from the United States Department of 

Agriculture (USDA) Natural Resources Conservation Service (NRCS). The STATSGO2 

database developed by the NRCS represents soil conditions used in the SWAT model. 

Topography data is also provided by the USGS as a DEM. The resolution of the DEM used 

in the SWAT model is 30 meters by 30 meters. The National Oceanic and Atmospheric 

Administration (NOAA) provides climatology data used in SWAT, i.e. precipitation, 

temperature, solar radiation, wind speed, humidity, and potential evapotranspiration. A 

NOAA weather station is present to the northeast of the Upper South Elkhorn watershed at 

the Bluegrass Airport. The SWAT hydrologic model was calibrated and validated with 

average flowrate data collected near the watershed outlet at USGS Gage 03289000. 
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Hydrologic response units (HRUs) group landscapes with similar land uses, soil types, and 

slopes. SWAT outputs runoff, soil water content, and many other parameters for each HRU 

at the indicated time step. SWAT results used to predict the Probability of Sediment 

Connectivity were specified at the daily time step. Results for each HRU in the Upper 

South Elkhorn watershed exist from 2006 to 2013. The Probability of Connectivity for the 

Upper South Elkhorn watershed was computed for years 2006, 2007, and 2008. 

 To predict the Probability of Connectivity, each of the 62 HRUs within the Upper 

South Elkhorn were spatially mapped in ArcMap and model results were assigned as 

attributes. Output parameters from SWAT used in the Probability of Connectivity model 

include daily runoff and daily curve number for each HRU. Rasters for daily runoff and 

daily curve number were the inputs used for the Probability of Connectivity model. Daily 

runoff for each HRU is determined using the NRCS Curve Number equation (NRCS, 

1972), which is 

𝑄𝑄 = �𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑−𝐼𝐼𝑎𝑎�
2

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑−𝐼𝐼𝑎𝑎+𝑆𝑆
         (Eq. 6.1) 

where Q is the accumulated runoff depth (mm of water), Rday is the rainfall depth for the 

day (mm of water), Ia is the initial abstractions, i.e. surface storage, interception, and 

infiltration prior to runoff (mm of water), and S is the retention parameter (mm of water). 

The retention parameter is defined as  

𝑆𝑆 = 25.4 ∗ �1000
𝐶𝐶𝐶𝐶

− 10�        (Eq. 6.2) 

where CN is the curve number for the day.  
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Daily Curve Number is a function of daily soil water content, which can be 

determined by the water balance equation 

𝑆𝑆𝑊𝑊𝑡𝑡 = 𝑆𝑆𝑊𝑊0 + ∑ �𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑎𝑎 − 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑔𝑔𝑔𝑔� 𝑡𝑡
𝑖𝑖=1     (Eq. 6.3) 

where SWt represents the final soil water content at the specified time step (mm of water), 

SW0 represents the initial soil water content at time step i (mm of water), Rday represents 

the amount of precipitation at time step i (mm of water), Qsurf is the amount of surface 

runoff at time step i (mm of water), Ea is the evapotranspiration at time step i (mm of 

water), wseep  is the amount of water entering the vadose zone from the soil water profile at 

time step i (mm of water), and Qgw is the amount of return flow at time step i (mm of water). 

The retention parameter thus is calculated using the following equation 

𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ∗ �1 − 𝑆𝑆𝑆𝑆
[𝑆𝑆𝑆𝑆+exp(𝑤𝑤1−𝑤𝑤2∗𝑆𝑆𝑆𝑆)]�      (Eq. 6.4) 

where Si is the retention parameter at a given time step (mm of water), Smax is the maximum 

value the retention parameter can achieve on any given day (mm of water), SW is the soil 

water content of the entire profile exluding the amount of water held in the profile at wilting 

point at a given time step (mm of water), and w1 and w2 are shape coefficients.  

 Figure 6.5 shows the runoff production for every HRU as predicted by the SWAT 

hydrologic model in the Upper South Elkhorn watershed at day 72 of 2006, which along 

with daily curve number determines several subcomponents of the probability of 

connectivity. Day 72 is used as an example here because day 72 was determined to have 

the most connected land during 2006. As seen in Figure 6.5, larger amounts of runoff are 

predicted to be produced from southeast and northwest portions of the watershed. Higher 

runoff in the southeast portion of the watershed is attributed to the higher curve number 



76 
 

assigned to the urban areas found in this portion of the watershed. Engineering properties 

of the soils shift lower in the watershed from 64% hydrologic soil group B, which indicates 

a moderate rate of water transmission according to the NRCS (1986), 30% hydrologic soil 

group C, which indicates a low rate of water transmission, and 6% hydrologic soil group 

D, which indicates a very low rate of water transmission to 26% hydrologic soil group B, 

45% hydrologic soil group C, and 29% hydrologic soil group D. The shift in the 

engineering properties of the soil is attributed to the decrease in percent sand and increase 

in percent fine clay in the lower portion (northwest portion) of the watershed (NRCS, 

2006). This attributes to the high amounts of runoff predicted in the northwest portion of 

the watershed.  

6.2 Parameterization of the Probability of Sediment Connectivity 

 The Probability of Sediment Connectivity is expressed mathematically as 

Equation (3.2), as seen in Chapter 3.1  

 𝑃𝑃(𝐶𝐶) = {𝑃𝑃(𝑆𝑆)} × {𝑃𝑃(𝐷𝐷𝐻𝐻) + 𝑃𝑃(𝐷𝐷𝑁𝑁𝑁𝑁) − 𝑃𝑃(𝐷𝐷𝐻𝐻)𝑃𝑃(𝐷𝐷𝑁𝑁𝑁𝑁)} × {𝑃𝑃(𝑇𝑇𝐻𝐻) + 𝑃𝑃(𝑇𝑇𝑁𝑁𝑁𝑁) −

𝑃𝑃(𝑇𝑇𝐻𝐻)𝑃𝑃(𝑇𝑇𝑁𝑁𝑁𝑁)} × {1 − 𝑃𝑃(𝐷𝐷𝐶𝐶)}      (Eq. 3.2) 

In the present study, the individual probabilities within Equation (3.2) were 

parameterized as a set of discrete, piecewise distributions to represent small regions, or 

geospatial cells, of a watershed. The four subcomponents of the Probability of Connectivity 

were parameterized including: (1) the probability of sediment supply, (2) the probability 

of sediment detachment, (3) the probability of sediment transport, and (4) the probability 

of disconnectivitiy. It was intended that information, via either predictive sediment 

transport formula or observation, be estimated for each geospatial cell for application 

across the watershed. At the same time, it was realized that the discretized results could be 
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integrated spatially and temporally to provide continuous distributions applicable to the 

entire watershed. 

6.2.1 Probability of Sediment Supply Parameterization 

The probability of sediment supply models the occurrence of a sediment surface 

that can be eroded. In the present application, the probability of sediment supply was 

predicted for a geospatial cell using a simple piecewise function as 

𝑃𝑃𝑖𝑖(𝑆𝑆) = � 1, if sediment is present within the cell     
 0,   if sediment is absent within the cell          (Eq. 6.5)  

where i is an index representing a geospatial cell.  Equation (6.5) was parameterized 

through observations, both from field visits and remote sensing, of the occurrence of a 

sediment surface that might be eroded. For the Upper South Elkhorn watershed, the 

probability of sediment supply was parameterized via observation. Erodible surfaces were 

considered to be any pervious surface in the watershed. Therefore, if the surface was 

impervious, it was assumed that no sediment was present within the cell and thus the 

probability of sediment supply equaled zero. Impervious surfaces were digitized using 

aerial imagery provided by the USDA National Agriculture Imagery Program (NAIP) in 

2010. The probability of sediment supply for the Upper South Elkhorn watershed is shown 

in Figure 6.6. The digitization of the probability of sediment supply was converted into a 

raster with resolution of 5 feet by 5 feet.  

6.2.2 Probability of Sediment Detachment Parameterization 

The probability of sediment detachment models the union of the probabilities of 

hydrologic sediment detachment and non-hydrologic sediment detachment. The 

probability of sediment detachment models the likelihood that a sediment particle can be 
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eroded within a geospatial cell. In the present study, the probability of hydrologic 

detachment was expressed using an excessive shear stress approach as 

 𝑃𝑃𝑖𝑖𝑖𝑖(𝐷𝐷𝐻𝐻) = �
1, if 𝜏𝜏𝑓𝑓 𝑖𝑖𝑖𝑖 − 𝜏𝜏𝑐𝑐𝑐𝑐 𝑖𝑖 > 0
0, if 𝜏𝜏𝑓𝑓 𝑖𝑖𝑖𝑖 − 𝜏𝜏𝑐𝑐𝑐𝑐 𝑖𝑖 ≤ 0      (Eq. 6.6) 

where j is an index representing a time step. Equation (6.6) evaluates the shear stress of the 

fluid in the geospatial cell, 𝜏𝜏𝑓𝑓, with respect to the critical shear stress. The shear stress of 

the fluid (in Pascals) was approximated via the fluid momentum equation considering one-

dimensional uniform flow of runoff (Jain, 2001) as 

 𝜏𝜏𝑓𝑓 𝑖𝑖𝑖𝑖 = 𝛾𝛾𝐻𝐻𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖         (Eq. 6.7) 

where 𝛾𝛾 is the specific weight of the fluid (kN/m3), H is the runoff depth of the geospatial 

cell for a given time step as produced from the SWAT hydrologic model (mm of water), 

and S is the landscape slope assumed equal to the energy gradient (m/m). The landscape 

slope was determined in ArcMap using the Slope tool. The critical shear stress of the 

sediment to resist erosion was parameterized by considering the soil characteristics and 

land management characteristics that control the binding of particles into aggregates 

(Tisdall and Oades, 1982; Alberts et al., 1995; Foster et al., 1995; Lal, 1999; Fox et al., 

2015). Critical shear stress in the Upper South Elkhorn was predicted using the empirical 

critical shear stress equation for rangeland soil found in Chapter 7 of the Water Erosion 

Prediction Project (WEPP) manual (Alberts et al., 1995) as 

𝜏𝜏𝑐𝑐𝑐𝑐 = 3.23 − 5.6 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 24.4 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 0.9 ∗ 𝜌𝜌𝑑𝑑
1000

    (Eq. 6.8) 

where 𝜏𝜏𝑐𝑐𝑐𝑐 is the critical shear stress of the flow necessary to detach soil (Pa), sand is the 

fraction of sand in the surface of the soil (0 to 1), orgmat is the fraction of organic material 
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in the surface of the soil (0 to 1), and 𝜌𝜌𝑑𝑑 is the dry soil bulk density (kg/m3). These soil 

characteristics are listed in the soil surveys for the Upper South Elkhorn watershed 

provided by the USDA. Equation (6.7) parameterizes the probability of hydrologic 

detachment in Equation (6.6) as a temporally varying probability because the runoff depth 

changes with time as function of the distribution of precipitation and soil conditions. As an 

example, the probability of hydrologic detachment for day 72 of year 2006 is shown in 

Figure 6.7. The probability of non-hydrologic detachment considers the presence of natural 

or anthropogenic disturbance agents, other than fluvial processes, that might initiate 

sediment detachment as 

 𝑃𝑃𝑖𝑖(𝐷𝐷𝑁𝑁𝑁𝑁) = � 1, if a disturbance agent exists                      
 0,   if a disturbance agent is not present          (Eq. 6.9) 

Equation (6.9) was parameterized by considering field or remote sensing observations of 

non-hydrologic disturbances that would detach sediment from the soil surface.  Such 

examples could include livestock that trample and dislodge soil particles and aggregates 

and mechanized detachment such as that which would occur from construction or mining 

equipment. The extent and severity of non-hydrologic detachment in the Upper South 

Elkhorn watershed was determined via remote sensing and in the field via the 

aforementioned WAVES Protocol. Farms with livestock nearby the stream corridor and 

construction sites were digitized in ArcMap and assumed to detach sediment. The result of 

the digitization is shown in Figure 6.8. The probability of hydrologic detachment and non-

hydrologic detachment were joined to form the overall probability of sediment detachment 

for the Upper South Elkhorn watershed. 
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6.2.3 Probability of Sediment Transport Parameterization 

Equations (6.5) through (6.9) estimate controls on sediment connectivity including 

sediment supply and initiation for sediment detachment, but it is well recognized that 

fluvial or non-fluvial energy is also needed to allow sediment transport and thus 

connectivity in a watershed (Borselli et al., 2008). The probability for hydrologic transport 

was parameterized by considering that fluid and its energy must be supplied from upstream 

to a geospatial cell, which is termed upstream hydrologic energy for transport or TH-up, and 

energy must exist within a geospatial cell such that sediment does not fall out of suspension 

and deposit, which is termed TH-dwn.  The authors’ parameterization of the probability of 

hydrologic transport adopts the theory behind the now fairly widely cited index of sediment 

connectivity (Borselli et al., 2008).  In this manner, the probability of hydrologic transport 

was parameterized as 

 𝑃𝑃𝑖𝑖𝑖𝑖(𝑇𝑇𝐻𝐻) = 𝑃𝑃𝑖𝑖𝑖𝑖�𝑇𝑇𝐻𝐻−𝑢𝑢𝑢𝑢 ∩ 𝑇𝑇𝐻𝐻−𝑑𝑑𝑑𝑑𝑑𝑑�      (Eq. 6.10) 

which is equivalent to  

 𝑃𝑃𝑖𝑖𝑖𝑖(𝑇𝑇𝐻𝐻) = 𝑃𝑃𝑖𝑖𝑖𝑖�𝑇𝑇𝐻𝐻−𝑢𝑢𝑢𝑢�𝑃𝑃𝑖𝑖𝑖𝑖(𝑇𝑇𝐻𝐻−𝑑𝑑𝑑𝑑𝑑𝑑)      (Eq. 6.11) 

The probability for upstream energy for hydrologic transport represents the 

likelihood that a sediment particle is transported from flow accumulated from the upstream 

contributing area (Borselli et al., 2008). It is theorized that the probability for upstream 

energy for hydrologic transport reflects the geomorphic threshold conditions for ephemeral 

gully and rill incision, which have been identified as a dominant sediment source in 

catchments (Auzet et al., 1993; Baade et al., 1993; Vandaele, 1993; Vandaele and Poesen, 

1995; and Vandaele et al., 1996). Interrill and diffuse erosional processes were not 
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considered to contribute to the probability of upstream energy for hydrologic transport after 

discussions with several experts in the soil science field and field visits where erosional 

processes were observed (Blanford, 2017; Gumbert, 2017; Smallwood, 2017).  The 

probability for upstream energy for hydrologic transport was parameterized with the 

following piecewise function as 

𝑃𝑃𝑖𝑖𝑖𝑖�𝑇𝑇𝐻𝐻−𝑢𝑢𝑢𝑢� = �
1, if 𝑆𝑆𝑎𝑎𝑎𝑎 𝑖𝑖 − 𝑆𝑆𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 > 0
0, if 𝑆𝑆𝑎𝑎𝑎𝑎 𝑖𝑖 − 𝑆𝑆𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 ≤ 0     (Eq. 6.12) 

where Sac indicates the slope of geospatial cell i and is assumed equal to the energy gradient 

and Scr represents the critical slope required to initiate ephemeral gully incision of 

geospatial cell i (Vandaele et al.,1996).  

Past literature (Montgomery and Dietrich 1994; Vandaele et al., 1996; Torri and 

Poesen, 2014) has focused particularly on the relationship between the upstream drainage-

basin area and the critical slope gradient of ephemeral gully initiation. By plotting the 

critical slope of ephemeral gullies measured in the field against the upstream drainage area 

of the ephemeral gully, Vandaele et al. (1994) showed the critical relation between critical 

slope and upstream drainage area is a power function, above which ephemeral gullying has 

the potential to occur. Thus, the critical slope required to initiate ephemeral gully incision 

here is represented as 

𝑆𝑆𝑐𝑐𝑐𝑐 𝑖𝑖 = 𝑎𝑎𝑖𝑖𝐴𝐴𝑖𝑖−𝑏𝑏         (Eq. 6.13) 

where a is a coefficient representative of the local climate and specific land use and soil 

characteristics of geospatial cell i, A is the upstream drainage area of geospatial cell i, and 

b is an exponent. Upstream drainage area is used as a surrogate for the volume of runoff 
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contributed to the ephemeral gully, which reflects the theory that the location and size of 

ephemeral gullies is controlled by concentrated surface runoff of sufficient magnitude and 

duration to initiate and sustain erosion (Vandaele et al., 1994). The entirety of the upstream 

drainage area contributing to geospatial cell i is assumed to be hydrologically connected; 

i.e. all land within the upstream drainage area of geospatial cell i contributes runoff to 

geospatial cell i.  

 Torri and Poesen (2014) empirically derived a critical slope-upstream drainage area 

relationship for geospatial cells after extensively reviewing ephemeral gully initiation data 

collected by many researchers from 1983 to 2011 across six continents. The empirical 

relationship between critical slope and upslope area is parameterized as 

𝑆𝑆𝑐𝑐𝑐𝑐 𝑖𝑖 𝑗𝑗 = 0.73𝑐𝑐𝑖𝑖𝑒𝑒1.3𝑅𝑅𝑅𝑅𝐶𝐶𝑖𝑖�0.00124𝑆𝑆0.05 𝑖𝑖𝑖𝑖 − 0.37�𝐴𝐴𝑖𝑖−0.38   (Eq. 6.14) 

where S0.05 represents the maximum potential loss to runoff as determined from the NRCS 

Curve Number method for a geospatial cell at a particular time step, RFC is the rock 

fragment cover of the soil, which affects the infiltration rate of runoff, and c represents 

other sources of the variation of the coefficient a from Equation (6.13) in geospatial cell i 

not accounted for by the Curve Number approximation. The Curve Number method here 

models the effect that vegetation, land use, and soil type have on runoff abstraction. Initial 

abstraction is predicted using the empirical equation developed by Hawkins et al. (2009) 

𝑆𝑆0.05 = 0.819�25.4 �1000
𝐶𝐶𝑁𝑁𝑖𝑖𝑖𝑖

− 10�
1.15

�      (Eq. 6.15) 

where CNij represents the Curve Number of cell i at time step j. The daily curve number 

output for individual HRUs via the SWAT hydrologic model represents CNij. Equation 
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(6.15) aims to consider both the quantity of water transporting sediment and the energy of 

water through the inclusion of the upstream contributing area and flow depth of runoff, 

respectively. The probability of upstream hydrologic transport for day 72 of year 2006 is 

shown in Figure 6.9.  

 The probability of hydrologic transport shown in Equation (6.11) also must 

consider the potential for sediment to fall out of suspension within the geospatial cell or 

remain suspended and transport through the geospatial cell downstream to the next region 

of the watershed.  The probability for downstream hydrologic transport can be 

parameterized for a geospatial cell by considering the capacity of the fluid to transport 

sediment in cell i relative to the capacity of the fluid to transport sediment in the 

contributing area upstream of cell i. The probability for downstream hydrologic transport 

can be expressed with a discrete piecewise function as 

 𝑃𝑃𝑖𝑖𝑖𝑖(𝑇𝑇𝐻𝐻−𝑑𝑑𝑑𝑑𝑑𝑑) = �
1, if 𝑇𝑇𝐶𝐶 𝑖𝑖𝑖𝑖 − 𝑇𝑇𝐶𝐶−𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖 > 0
0, if 𝑇𝑇𝐶𝐶 𝑖𝑖𝑖𝑖 − 𝑇𝑇𝐶𝐶−𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖 ≤ 0     (Eq. 6.16) 

where TC is the transport capacity of the fluid to carry sediment in geospatial cell i and TC-

up is the transport capacity of the fluid to carry sediment upstream of cell i.  In order to 

provide expressions for TC and TC-up, the authors consider a power associated definition for 

the transport capacity (Russo and Fox, 2012; Ford and Fox, 2014) as 

𝑇𝑇𝐶𝐶 = 𝑘𝑘𝑡𝑡𝜏𝜏𝑓𝑓1.5         (Eq. 6.17) 

where kt is a coefficient and 𝜏𝜏𝑓𝑓 is defined in Equation (6.7).  Considering Equations (6.17) 

and (6.7) via substitution, it is realized that Equation (6.16) can be simplified when 

assuming that a representative runoff depth for the watershed can be substituted for the 
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spatially explicit runoff depth in Equation (6.7).  The assumption removes the temporal 

dependence of Equation (6.16) placing the probability of downstream transport upon the 

relative energy gradient.  The assumption is reasonable when considering that upstream 

contributing area was already accounted for within the spatially explicit runoff depth in 

Equations (6.10) and (6.11). The probability of downstream hydrologic transport thus is 

representative of the static connectivity of the watershed when surrogating slope for the 

energy gradient of the fluid. It should be noted that disconnected cells downstream of 

connected cells do not necessarily cause deposition. Rather, the authors imply that 

disconnected cells downstream of connected cells simply do not have the capacity to pick 

up more sediment that is contributable to the stream network. The authors believe this to 

be a reasonable assumption considering the realization that fine sediments and colloidal 

particles (less than 53 microns in diameters), once entrained, can take hours, or even days 

to settle (Jin and Romkens, 2001; Jin et al., 2002; Le Bissonnais et al., 2004; Owens et al., 

2007; Liu et al., 2008; Rienzi, 2017). In order to consider the upstream energy gradient that 

might be compared with the energy gradient in the geospatial cell i, the authors suggest the 

spatial mean upstream energy gradient as reasonable.  Therefore, the probability for 

downstream hydrologic transport can be expressed as 

 𝑃𝑃𝑖𝑖(𝑇𝑇𝐻𝐻−𝑑𝑑𝑑𝑑𝑑𝑑) = �
1, if 𝑆𝑆𝑖𝑖 −

∑𝑆𝑆𝑢𝑢𝑢𝑢
𝑁𝑁

> 0

0, if 𝑆𝑆𝑖𝑖 −
∑𝑆𝑆𝑢𝑢𝑢𝑢
𝑁𝑁

≤ 0
      (Eq. 6.18) 

In this manner, the fluid energy to transport sediment in cell i is compared to the incoming 

fluid energy. Si, representative of the slope in a particular geospatial cell, is found by 

applying the Slope tool in ArcMap to the Upper South Elkhorn DEM. N is representative 

of the number of upstream cells that flow into cell i. This is determined via the flow 
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accumulation tool, which determines the number of cells flowing into a downstream cell. 

∑𝑆𝑆𝑢𝑢𝑢𝑢 is the sum of the slopes of each cell upstream of cell i. This is determined by 

weighting the flow accumulation raster by the slope raster. The probability of downstream 

hydrologic transport is shown in Figure 6.10.  

The probability of non-hydrologic transport represents processes such as eolian 

transport from wind, mass wasting, and land sliding. However, the present application of 

this thesis focuses on a fluvial-dominated system only, thus non-hydrologic transport was 

not parameterized for the Upper South Elkhorn watershed.  

6.2.4 Probability of Sediment Disconnectivity Parameterization 

Finally, the probability of sediment disconnectivity (Fryirs et al., 2007, Fryirs, 

2013) via morphologic features and anthropogenic obstacles and revetments is explicitly 

included into the probability-based modeling framework primarily through observations 

from remote sensing and field assessments.  The probability of disconnectivity is 

parameterized as 

 𝑃𝑃𝑖𝑖(𝐷𝐷𝐶𝐶) = � 1, if disconnectivity exists                      
 0,   if disconnectivity does not exist          (Eq. 6.19) 

Features causing sediment disconnectivitiy were identified via observations.  If features do 

exist, the entire upstream region of the watershed that was disconnected should be 

parameterized with 𝑃𝑃(𝐷𝐷𝐶𝐶) = 1. The present study focuses primarily on the contribution of 

sediment from the uplands of the watershed, thus only lateral disconnectivities were 

digitized in the parameterization of the probability of disconnectivitiy for the Upper South 

Elkhorn watershed.  Disconnectivities and the regions upstream of disconnectivities were 

digitized using the method previously discussed in Section 6.1.3 of this thesis. The inverse 
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of the probability of disconnectivitiy (1 – 𝑃𝑃(𝐷𝐷𝐶𝐶)) is intersected with the other 

aforementioned probabilities and is shown in Figure 6.11.  

6.3 Probability of Sediment Connectivity Calibration and Validation 

 The union of the subcomponents of the probability of connectivity simulate the 

active contributing area of a catchment at a particular time step. It was iteratively 

determined that the parameters that potentially could be calibrated for the probability of 

connectivity model lacked pronounced sensitivity (see Chapter 7.1.3). For this reason, and 

because the authors believed the parameterized probability of connectivity model best 

represented the processes occurring in the catchment intuitively and according to the 

literature, the probability of connectivity model was not calibrated.  

 The authors performed a qualitative validation of the probability of connectivity 

model by comparing the land found to actively contribute to the sediment cascade at a 

particular time step to the actual processes known to occur within the Upper South Elkhorn 

watershed. Upland erosion production in the Upper South Elkhorn occurs primarily 

through rill erosion, ephemeral gully erosion, and concentrated flow pathways, while 

diffusional erosion processes (i.e. sheet and interrill erosion) are believed to provide a 

minor contribution to the overall sediment flux at the watershed outlet (Blanford, 2017; 

Gumbert, 2017; Smallwood, 2017). Livestock and construction sites in the uplands 

exacerbate the detachment rates of sediment particles through the removal of protective 

vegetation and exposure to excessive eolian and fluvial shear stresses (Evans, 2017). The 

authors determined through visual observation that, in general, the active contributing area 

predicted by the probability of connectivity model coincided well with the potential 

locations where the known dominant processes of the watershed could occur. While the 
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authors recognize the importance of calibrating and validating parameters of models, the 

lack of parameter sensitivity and perceived difficulty of collecting functional data that 

could calibrate and validate the probability of connectivity model lead the authors to 

believe that the qualitative validation aforementioned was sufficient.  

6.4 Erosion Model Set Up, Input Data, and Parameterization 

6.4.1 Erosion Model Set Up 

One utility of a highly distributed sediment connectivity model promoted in this 

research is that it can be coupled with watershed erosion predictive modeling.  Such 

coupling may alleviate the complexity of simulating a spatially explicit, yet over-

parameterized and computationally intensive, sediment transport model.  A watershed 

erosion model was simulated in this application by inputting temporally and spatially 

explicit results of the probability of sediment connectivity application as well as providing 

inputs and parameterizing sediment transport formula. As previously mentioned, the 

probability of sediment connectivity provides the active contributing area for sediment 

transport within any time step. The authors choice of sediment transport formula within 

actively eroded portions of the landscape relied on an understanding of the dominant 

sediment transport processes in the watershed as well as information propagated from or 

already considered within the probability of sediment connectivity results. In the present 

study site, it was recognized that fluvial erosion of concentrated flow pathways including 

gullies and rills provided the major source of upland eroded sediment to the stream network 

(Blanford, 2017; Gumbert, 2017; Smallwood, 2017). For this reason, fluvial erosion of 

fines, in this case primarily gully erosion of silt loam, estimated via the classical 

Partheniades (1965) approach was pertinent. The initiation and hence existence of rills and 
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ephemeral gullies across the landscape was already explicitly considered in the probability 

of sediment connectivity model, and for this reason it was not necessary to re-map the 

distribution of rills and gullies when calculating the sediment transport loads. In addition, 

the parameterization of the probability of sediment disconnectivitiy subcomponent within 

our probability of sediment connectivity model already simulated portions of the landscape 

where deposition is pronounced due to the existence of buffers.  

 The watershed erosion model is simulated by inputting the temporally and spatially 

explicit results of the probability of connectivity as well as parameterizing and providing 

inputs to the sediment transport formula. The erosion model simulates sediment yield 

(tonnes/day) at the watershed outlet by integrating the daily volume of eroded sediment 

from the active contributing area predicted by the Probability of Connectivity model at the 

specified time step. The yearly sediment yield is predicted by integrating the daily sediment 

yield for 365 days. Daily sediment yield is predicted as 

𝑆𝑆𝑦𝑦 = 𝜖𝜖 ∗ 𝜌𝜌𝑠𝑠 ∗ 𝑡𝑡 ∗ 𝑙𝑙 ∗ 𝑤𝑤        (Eq. 6.20) 

where Sy is the sediment yielded at the watershed outlet from the active contributing area 

(tonnes), 𝜖𝜖 is the erosion rate (m/s) as predicted by the Partheniades (1965) equation, 𝜌𝜌𝑠𝑠 is 

the bulk density of the sediment (kg/m3), t is the amount of time that sediment is contributed 

from the active contributing area (s), l is the length of the eroding rill or ephemeral gully 

(m), and w is the width of the eroding rill or ephemeral gully (m). It is assumed that the 

erosion rate is proportional to shear stress in excess of the critical shear stress of the eroding 

surface. Erosion rate, as predicted by Partheniades (1965), is simulated as 

𝜖𝜖 = 𝑘𝑘𝑑𝑑 ∗ �𝜏𝜏𝑓𝑓 − 𝜏𝜏𝑐𝑐𝑐𝑐�         (Eq. 6.21) 
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where 𝜖𝜖 is the erosion rate of the soil (m/s), kd is the erodibility coefficient (m3/N-s), 𝜏𝜏𝑐𝑐𝑐𝑐 is 

the critical shear stress of the eroding surface (Pa), and 𝜏𝜏𝑓𝑓 is the effective shear stress (Pa) 

of the accumulated flow on the eroding surface. The effect shear stress of the accumulated 

flow on the eroding surface is approximated via the fluid momentum equation considering 

one-dimensional uniform flow of runoff (Jain, 2001) as  

𝜏𝜏𝑓𝑓 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌          (Eq. 6.22) 

where 𝜌𝜌 is the density of the fluid (kg/m3), g is the gravitational acceleration constant 

(m/s2), H is the accumulated runoff depth. Because connected cells within the watershed 

were found to have a generally steep slope, runoff depth is approximated using the Darcy-

Weisbach equation as  

𝑅𝑅 = 𝑈𝑈2∗𝑓𝑓
8∗𝑔𝑔∗𝑆𝑆

          (Eq. 6.23) 

where R is the hydraulic radius of the channel (m), U is the velocity of the fluid (m/s), f is 

the Darcy-Weisbach friction factor (dimensionless), g is the gravitational acceleration 

constant (m/s2), and S is the slope of the channel (m/m), a surrogate of the energy gradient. 

In the present study, the hydraulic radius R is assumed equal to the runoff depth H. The 

velocity of the fluid is found using the conservation of mass equation for a rectangular 

channel as 

𝑈𝑈 = 𝑄𝑄
𝑤𝑤𝑤𝑤

          (Eq. 6.24) 

where Q is the flowrate (m3/s) of the fluid, w is the width of the channel (m), and H is the 

runoff flow depth (m) .  
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6.4.2 Erosion Model Input Data 

 The watershed erosion model was applied to the Upper South Elkhorn watershed 

at the same time step as the probability of connectivity model. The inputs to the erosion 

model include the active contributing area that produces sediment, the critical shear stress 

of the eroding surface, average upstream contributing area, longitudinal channel slopes, 

channel bathymetries, channel lengths, relative roughness of the channel, bulk density of 

the eroded sediment, storm length, the time sediment is produced from an eroding channel, 

and an erodibility coefficient. Table 6.1 shows the input data and parameter values used in 

the watershed erosion model after calibration and validation.  

6.4.3 Erosion Model Parameterization 

The storm length and sediment contributing times were parameterized by using 

three methods to determine time of concentration. The estimation of the routing times of 

storms is precarious if knowledge of the storm length is unknown. Therefore, 

representative storm lengths were determined for the erosion model using several widely 

accepted methods to estimate time of concentration. Time of concentration was used as a 

surrogate for storm length because (1) time of concentration represents the time needed for 

water to flow from the hydraulically most remote point in the watershed to the watershed 

outlet and (2) the time of concentration generally lasts until the inflection point of the 

falling limb of the hydrograph (NRCS, 2010), thus capturing a majority of the length of 

the storm event. The three methods used to determine the time of concentration were: (1) 

the watershed lag method (Mockus, 1973), (2) the velocity method (NRCS, 2010), and (3) 

the Kirpich equation (Wanielista et al, 1997).  
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 In order to determine the time of concentration, a representative flow length for 

each bin was first determined using the empirical relationship developed by Mockus (1973) 

by  

𝑙𝑙 = 209 ∗ 𝐴𝐴0.6         (Eq. 6.25) 

Where l represents the flow length (ft) and A represents the drainage area of the watershed 

(acres). The watershed lag method estimates the time of concentration as  

𝑇𝑇𝑐𝑐 = 𝑙𝑙0.8∗(𝑆𝑆+1)0.7

1,140∗𝑌𝑌0.5          (Eq. 6.26) 

where Tc represents the time of concentration (hr), l is the flow length (ft), Y is the average 

watershed land slope (%), and S is maximum potential retention (in). S is a function of the 

curve number of the watershed, found as 

𝑆𝑆 = 1000
𝐶𝐶𝐶𝐶

− 10         (Eq. 6.27) 

where CN is the average weighted curve number of the watershed.  

 The velocity method developed by the NRCS was also used to determine time of 

concentration. The velocity method breaks up the time of concentration into three separate 

flow regimes: (1) sheet, (2) shallow concentrated flow, and (3) open channel flow. 

Typically, 300 feet is the maximum flow length for sheet flow (NRCS, 2010). Sheet flow 

is represented as  

𝑇𝑇𝑡𝑡 = 0.007∗(𝑛𝑛𝑛𝑛)0.8

𝑃𝑃2
0.5∗𝑆𝑆0.4          (Eq. 6.28) 

where Tt is the travel time (hr), n is Manning’s roughness coefficient, l is the sheet flow 

length (ft), P2 is the 2-year, 24-horu rainfall (in), and S is the slope of the land surface 
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(ft/ft). To determine the travel time of shallow concentrated flow and open channel flow, 

the following relationship is used 

𝑇𝑇𝑡𝑡 = 𝑙𝑙
3600∗𝑉𝑉

           (Eq. 6.29) 

Where Tt is the travel time for shallow concentrated flow (hr), l is the shallow concentrated 

flow length, and V is the velocity of the traveling fluid.  

 Finally, the Kirpich method was used to determine the time of concentration for 

each bin, given by 

𝑇𝑇𝑡𝑡 = 0.0078 ∗ � 𝐿𝐿
0.77

𝑆𝑆0.385�        (Eq. 6.30) 

where Tt  is the time of concentration (min), L is the flow length (ft), and S is the slope 

(ft/ft).  

Average rill/ephemeral gully width was empirically parameterized using the 

equation developed by Nachtergaele et al., (2002) as 

𝑊𝑊 = 2.51 ∗ 𝑄𝑄0.41         (Eq. 6.31) 

where W is the average rill or ephemeral gully width (m) and Q is the peak flow rate. For 

the present study, however, the average flow rate was used to estimate average 

rill/ephemeral gully width. 

 Erodibility, kd, and critical shear stress, 𝜏𝜏𝑐𝑐𝑐𝑐, of the eroding soil were parameterized 

via typical literature values. According to Hanson and Simon (2001), minimum and 

maximum values of kd were ranged from 0.00 to 1.3 cm3/N-s in the Yalobusa River System 
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of Mississippi. Minimum and maximum values of 𝜏𝜏𝑐𝑐𝑐𝑐 ranged from 0.38 Pa to 

approximately 400 Pa in extreme situations. 

 The friction factor used in the Darcy-Weisbach was empirically determined using 

the Colebrook-White equation (Colebrook and White, 1937) as  

1
�𝑓𝑓

= −2 log � 𝜖𝜖
3.7𝐷𝐷ℎ

+ 2.51
𝑅𝑅𝑅𝑅∗�𝑓𝑓

�        (Eq. 6.32) 

where f is the Darcy-Weisbach friction factor, 𝜖𝜖
𝐷𝐷ℎ

 is the relative roughness of the surface, 

and Re is the Reynolds number. The relative roughness parameter was assumed to range 

between 10% and 20%, which is representative of hydraulically rough channels that are 

found in lowland, bedrock watersheds (Colebrook and White, 1937). For fully turbulent, 

rough flows, such as most concentrated flows that initiate rill and ephemeral gully erosion, 

the Colebrook-White equation simplifies substantially to 

1
�𝑓𝑓

= −2 log � 𝜖𝜖
3.7𝐷𝐷ℎ

�         (Eq. 6.33) 

6.4.4 Erosion Model Simulation Method 

The erosion model produces sediment flux at the watershed outlet at the daily time 

step. In order to estimate the erosion rate of the connected cells, cells were separated into 

three bins based on upstream contributing area. It is assumed that each cell placed in a 

certain bin will produce the same amount of sediment. To determine the upstream 

contributing area for each cell, the flow accumulation raster was multiplied with the 

connectivity raster produced by multiplying the rasters representing the subcomponents of 

the probability of sediment connectivity together. Connected cells were placed into bin one 

if their upstream contributing area was less than or equal to 65 cells. Cells were placed into 
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the bin two if their upstream contributing area was greater than 65 cells and less than or 

equal to 4,500 cells. Cells were placed into the third bin if the upstream contributing area 

was greater than 4,500 cells. The average contributing area for each bin was determined in 

ArcMap on the day of highest connectivity during the first study year, day 72 (March 12) 

of year 2006. The first bin has an average contributing area of 116 m2. The second bin has 

an average contributing area of 951 m2. The third bin has an average contributing area of 

approximately 34,079 m2. To determine the average contributing area of each bin, the 

average number of contributing cells for the bin was multiplied times the pixel resolution 

of the raster (5 feet by 5 feet), and converted from square feet to square meters. Bin sizes 

were iteratively chosen so multiple orders of magnitude of upstream contributing area were 

represented.  

 The average slope of the connected cells in each bin was also determined on the 

most connected day of the first study year, day 72 of 2006. The slope of each cell, as 

determined by the Slope tool in ArcMap, was averaged for the connected cells in each bin. 

Cells in the first bin with the smallest contributing area were found to have an average 

slope of approximately 0.16 m/m. Contributing cells in the second bin have an average 

slope of 0.13 m/m. The cells belonging to the third bin with the largest contributing area 

have an average slope of 0.12 m/m.  

 Accumulated flow rate was determined for each cell by multiplying the average 

upstream contributing area times the runoff depth at the particular time step, and then 

dividing by a representative storm length, as  

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏∗𝐻𝐻𝑖𝑖
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏

         (Eq. 6.34) 



95 
 

where Qavg represents the average accumulated flow rate produced by cells belonging to a 

certain bin (cms), Abin is the average contributing area for the connected cells belonging to 

a certain bin (m2), Hi is the average runoff depth produced across the entire watershed for 

a day (m), and tbin is the representative length of time that runoff is produced for the 

connected cells belonging to a certain bin (s). The representative storm lengths were 

determined for each bin using several widely accepted methods to estimate time of 

concentration. The three methods used to determine the time of concentration were: (1) the 

watershed lag method (Mockus, 1973), (2) the velocity method (NRCS, 2010), and (3) the 

Kirpich equation (Wanielista et al, 1997). The representative flow lengths of the three bins 

were determined to be 10.8 feet for bin one, 87.7 feet for bin two, and 750. 5 feet for bin 

three, as determined from Equation (6.25). 

 A representative slope of 1% was used for each bin to determine the time of 

concentration rather than the average slope found by averaging the slope of the connected 

cells in each bin since, by definition, time of concentration is equal to the time it takes for 

runoff to traverse from the hydraulically most remote point in the watershed to the 

watershed outlet. The time of concentration using the watershed lag method for each bin 

was found to be 0.015 hours for bin one, 0.08 hours for bin two, and 0.45 hours for bin 

three using the watershed lag method.  

 The velocity method developed by the NRCS was also used to determine time of 

concentration. A Manning’s n of 0.41, corresponding to Bermudagrass, was assumed. Flow 

length up until 300 feet was assumed to be sheet flow, thus contribution to time of 

concentration from bins one and two is only from sheet flow. P2 was determined from the 
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NOAA Precipitation Frequency Data Server (PFDS) as 3.04 in. The slope of each bin was 

assumed to also be 1%, or (0.01 ft/ft).  

 The velocity of shallow concentrated flow used to determine time of concentration 

is empirically derived (Kent, 1964) for short-grass and pasture as 

𝑉𝑉 = 6.962 ∗ 𝑆𝑆0.5         (Eq. 6.35) 

where V is the velocity of shallow concentrated flow (ft/s) and S is the slope of the channel 

(ft/ft). The shallow concentrated flow velocity was determined for connected cells in the 

third bin. The time of concentration for each bin was found to be 0.08 hours for bin one, 

0.45 hours for bin two, and 1.36 hours for bin three.  

 Finally, the time of concentration using the Kirpich method (Equation (6.30)) for 

the three bins was 0.7 minutes for bin one, 3.59 minutes for bin two, and 18.8 minutes for 

bin three. Time of concentration as determined by the velocity method was used as an 

initial guess for determining storm length. The timing parameter for each bin is a 

calibration parameter for determining sediment flux at the watershed outlet. Using this 

information, the average flowrate and the maximum flowrate for each bin was determined 

for the first study year. The average accumulated flow from cells in bin one is 0.0003 cms, 

0.0008 cms for bin two, and 0.014 cms for bin three. The maximum accumulated flow from 

cells in bin one is 0.025 cms, 0.068 cms for bin two, and 1.23 cms for bin three. Average 

rill/ephemeral gully width can be empirically determined using the equation developed by 

Nachtergaele et al., (2002) as 

𝑊𝑊 = 2.51 ∗ 𝑄𝑄0.41         (Eq. 6.31) 
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where W is the average rill or ephemeral gully width (m) and Q is the peak flow rate. For 

the present study, however, the average flow rate was used to estimate average 

rill/ephemeral gully width because the peak flow yielded a predicted gully width that far 

exceeds the gully widths that the authors have observed in the field. The error in this 

equation may be attributed to the model used to predict this empirical relationship in 

Nachtergaele et al.’s study (2002), from the prediction of runoff from SWAT, or because 

of differences in the climatology and physiology between the regions that Nachtergaele 

studied and the Upper South Elkhorn watershed.  

 The authors noticed several discrepancies between the average daily flow rate 

predicted by the SWAT hydrologic model and the actual flow rate observed at the USGS 

gage located at fort springs, near the watershed outlet. In general the hydrologic model 

predicted the average daily flow rate well (R2 = 0.65), but some average daily predicted 

flow rates differed substantially from the average daily flow rate measured at the watershed 

outlet. In order to account for this in the probability of connectivity model, days where the 

predicted average daily flow rate differed by more than 30% of the actual average daily 

flow rate were assimilated so the model could better reflect the actual hydrologic conditions 

of the day. 

 If the predicted daily flow rate needed to be assimilated, the actual measured flow 

rate at the watershed outlet was used to predict the average runoff over the catchment (mm). 

This was completed by plotting the predicted runoff (mm) versus the actual observed flow 

rate (cms) and fitting a regression equation to model the relationship. The actual runoff 

lead to a new estimation of the predicted daily runoff depth, which was reapportioned to 

individual hydrologic response units (HRU) based on the average deviation that each HRU 
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experienced from the weighted average of the runoff for the entire catchment. This newly 

reapportioned daily runoff depth (mm), as predicted by the actual flow rate at the watershed 

outlet, predicted a new probability of hydrologic detachment for the day, which was then 

used to predict the overall probability of connectivity. Once a new probability of 

connectivity was determined for the watershed for the day, erosivity and thus sediment flux 

at the watershed outlet were predicted using the newly apportioned bins of connected cells 

and new runoff predicted by the actual flow rate at the watershed outlet. 

The average daily curve number parameter was not assimilated because soil water 

content is the major predictor of daily curve number, and, generally, the soil water content 

estimation operates on a different time scale than the runoff parameter. For example, soil 

water content can remain high because of previously active hydrologic events even when 

no runoff occurs on a particular day, whereas runoff will generally enter the stream network 

in less than a day.  

The assimilation of daily flow rate was particularly important when predicting 

sediment flux at the daily time step since sediment flux can vary greatly based on the 

hydrologic conditions of the watershed. This was particularly important for the calibration 

and validation of the erosion model, since daily sediment flux data was used to calibrate 

and validate the model. Thus, all days in 2006 with predicted flow rate that deviated by 

more than 30% of the actual flow rate, as well as the days with sediment flux data used for 

calibration and validation, were assimilated. However, as outlined in the results of this 

thesis, it was determined that while some daily discrepancy existed between sediment flux 

estimates for assimilated and non-assimilated model runs, the net sediment flux over the 

entire year was identical at the end of the 2006 simulation year. For this reason, runoff was 
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not assimilated for the 2007 and 2008 probability of connectivity results, since only yearly 

sediment flux was desired for those years.  

6.5 Erosion Model Calibration and Validation 

 Calibration and validation is a vital part of applying a predictive erosion model. In 

order to calibrate and validate the erosion model, the prediction of daily sediment flux data 

was compared to the actual sediment flux measured at the watershed outlet. Sediment flux 

measurements were completed by Russo and Fox (2012), in late 2007 and 2008 using a 

Teledyne ISCO water sampler. The ISCO sampler was installed at the outlet of the 

watershed and collected 500 mL samples at the start of a storm event at one- or two-hour 

intervals until 24 samples were collected. The ISCO sampler collected total suspended 

solids, and an analysis performed by Russo and Fox (2012) determined the concentration 

of suspended sediments at the inlet of the sampler. The Einstein approach (1950) 

determined the sediment yield for each storm event. A total of seven events were sampled 

with the ISCO device. Table 6.2 summarizes the date, peak flow rate, and sediment yield 

for each captured event.  

 After careful consideration of the watershed processes, days 5 and 6 of this data 

were thrown out of this calibration and validation process. This is because the source of 

sediment production for this event (during mid-summer), was suspected to only be in-

stream sediment transport processes. The current iteration of the probability of connectivity 

model only accounts for upland erosion, and will later be coupled with an instream 

connectivity model to predict instream sediment transport processes. Also, it was realized 

that the flow rate and runoff used to predict the second captured event (2/21/2008) should 

be assimilated via the processes previously mentioned because the predicted flow rate from 
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the hydrologic model differed by more than 30% of the actual flow rate measured at the 

watershed outlet.  

 Therefore, the model was iteratively calibrated so the predicted daily sediment flux 

matched as closely as possible with the observed sediment flux. The first three events were 

used to calibrate the model: days 1 (12/2/2007), day 2 (2/21/2008), and day 3 (4/10/2008). 

Calibration parameters that were altered included the erodibility coefficient, kd, the critical 

shear stress of the eroding surface 𝜏𝜏𝑐𝑐𝑐𝑐, the relative roughness of the channel surface 𝜖𝜖
𝐷𝐷

, and 

the length of storm event and contribution time of sediment from the eroding surface. The 

contributing time of sediment was assumed equal to the length of the storm event in this 

instance, since the length of the storm event represents an idealized, average storm as 

opposed to capturing the length of an individual event. The coefficient of determination 

(R2) and the Nash-Sutcliff coefficient (NS) were maximized to calibrate the model 

𝑅𝑅2 = �
∑ �𝑂𝑂𝑖𝑖−𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎��𝑆𝑆𝑖𝑖−𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎�𝑛𝑛
𝑖𝑖=1

�∑ �𝑂𝑂𝑖𝑖−𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎�𝑛𝑛
𝑖𝑖=1 �

1
2� ∑ �𝑆𝑆𝑖𝑖−𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎�𝑛𝑛

𝑖𝑖=1 �
1
2
�
2

       (Eq. 6.36) 

𝑁𝑁𝑁𝑁 = 1 −
�∑ �𝑂𝑂𝑖𝑖−𝑆𝑆𝑗𝑗�𝑛𝑛

𝑖𝑖=1 �2

�∑ �𝑂𝑂𝑖𝑖−𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎�𝑛𝑛
𝑖𝑖=1 �2

        (Eq. 6.37)) 

where Oj is the observed value at time i, Oavg is the average value observed for i, Si is the 

simulated value at the time step, and Savg is the average simulated value for the time step. 

 The remaining two events were used for the validation of the erosion model (days 

4 and 7). Then, the same parameters were used to estimate the yearly sediment flux for 

2006, 2007, and 2008 and compared to the yearly results of Russo (2009). The R2 and NS 

values were determined to be 0.95 and 0.71 respectively for the calibration period, which 
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subjectively represents good agreement between the predicted and simulated flux. Table 

6.3 shows the calibration and validation fluxes. The yearly flux matched well the yearly 

flux predicted by the model of Russo (2009), which, on average, deviated by just 6%. While 

it is recognized by the authors that it would be ideal to have more data points to calibrate 

and validate the model, the efficacy of the model to fairly accurately predict sediment flux 

at two different time scales lead the authors to believe that the calibration method of the 

model was sufficient.  
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Figure 6.1:  Probability of connectivity application 
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Figure 6.2:  Study watershed soil types 
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Figure 6.3:  Study watershed elevation 
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Figure 6.4:  Study watershed disconnectivities 
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Figure 6.5: Predicted runoff for study watershed by the SWAT model on day 72 
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Figure 6.6: Probability of sediment supply 
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Figure 6.7: Probability of hydrologic detachment 
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Figure 6.8: Probability of non-hydrologic detachment 
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Figure 6.9: Probability of upstream transport 
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Figure 6.10: Probability of downstream transport 
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Figure 6.11: Probability of disconnectivity 
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Table 6.1: Erosion model parameters 

Parameter Description Value Units 

A1 Contributing Area, Bin 1 116 m2 

A3 Contributing Area, Bin 2 951 m2 

A3 Contributing Area, Bin 3 94,079 m2 
τcr Critical Shear Stress 3.5 Pa 
S1 Longitudinal Slope, Bin 1 0.16 m/m 
S2 Longitudinal Slope, Bin 2 0.13 m/m 
S3 Longitudinal Slope, Bin 3 0.12 m/m 
w1 Channel Width, Bin 1 0.088 m 
w2 Channel Width, Bin 2 0.13 m 
w3 Channel Width, Bin 3 0.44 m 
ε/D Relative Roughness 0.1 Unitless 
f Darcy-Weisbach Friction Factor 0.102 Unitless 

ρd Bulk Density of Eroded Sediment 1,400 kg/m3 

t1 
Storm Length, Erosion Time Bin 
1 5 m 

t2 
Storm Length, Erosion Time Bin 
2 0.25 hr 

t3 
Storm Length, Erosion Time Bin 
3 0.5 hr 

kd Erodibility Coefficient 0.0055 cm3/N-s 

L1 Channel Length, Bin 1 
Varies 

daily m 

L2 Channel Length, Bin 2 
Varies 

daily m 

L3 Channel Length, Bin 3 
Varies 

daily m 

ρw Density of Fluid 1,000 kg/m3 
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Table 6.2: Calibration and validation data used to predict sediment flux 

Day Date Qpeak (cms) Sy (t) 
1 12/2/2007 9.91 44.5 
2 2/21/2008 3.45 3.5 
3 4/10/2008 3.45 3.1 
4 5/15/2008 7.67 19 
5 7/30/2008 3.26 6.4 
6 7/31/2008 3.82 11.4 
7 10/7/2008 1.3 1.3 
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Table 6.3: Calibration and validation data used to predict sediment flux 

 
Day Predicted (t) Observed (t)  

1 63.48 44.5 

C
al

ib
ra

te
 

2 7.25 3.5 
3 1.50 3.1 
4 15.01 19 

V
al

id
at

e 

7 1.17 1.3 
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Chapter 7 Results 

7.1 Evaluation of Probability of Sediment Connectivity Model 

7.1.1 The probability of sediment connectivity reflects individual processes 

The overall premise of the sediment connectivity model developed herein was to 

incorporate the probability of occurrence of sediment transport processes as well as 

morphologic features responsible for sediment connectivity.  Therefore, as part of the 

model evaluation, it was important for the authors to investigate how sediment processes 

and morphologic characterization (e.g., sediment supply, hydrologic detachment of 

sediment) included within application of the model influence the net results. 

Examples of process impacts on connectivity show that all of the processes 

included within the probability of sediment connectivity model have some instances where 

they exhibit importance (see Figure 7.1).  For example, as shown in Figure 7.1a, the 

probability of sediment supply exhibits control on connectivity when impervious surfaces 

limit the production of sediment and thus have no connectivity. Impervious surfaces shown 

in the left portion of Figure 7.1a cause the overall probability of connectivity to equal zero, 

indicating disconnectivity due to a lack of sediment supply. In Figure 7.1b, the probability 

of sediment detachment exhibits control on connectivity when the predicted shear stress of 

the fluid is less than the estimated critical shear stress of sediment particles. Since the slope 

of the land surrogates the energy gradient of the flow, particularly flat surfaces will limit 

the fluvial shearing ability of the runoff, forcing the probability of sediment detachment to 

equal zero, thus causing the overall probability of sediment connectivity to equal zero as 

well, indicating disconnectivity due to the occurrence of no detachment. This is shown by 

the flat surface in the bottom left corner of Figure 7.1b causing overall disconnectivity.  
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Figure 7.1c shows the probability of downstream sediment transport by estimating 

the potential for sediment to be transported through a particular geospatial cell downstream 

to the next region of the watershed. The probability of downstream sediment transport 

exhibits control on connectivity when the transport capacity at a particular downstream cell 

during a particular time step is less than the average upstream transport capacity of the fluid 

to carry sediment upstream of a particular geospatial cell. When the slope of the 

downstream cell is less than the average upstream slope, the fluid does not possess enough 

energy to transport sediment, thus causing downstream disconnectivity of sediment. This 

is shown by the flat surface in the center of Figure 7.1c causing overall disconnectivity. 

Figure 7.1d shows the probability of upstream sediment transport by estimating the 

potential for sediment to be transported from the upstream contributing area. The 

probability of upstream energy for hydrologic transport reflects the geomorphic threshold 

conditions for ephemeral gully and rill incision. The probability of upstream sediment 

transport exhibits control on connectivity when the slope of the geospatial cell is greater 

than the critical slope required to initiate ephemeral gully incision. The formation of 

gullies, as shown on the left side of 7.1d, controls the connectivity of the hillslopes, as 

shown in the right side of 7.1d. Finally, the control exhibited by probability of 

disconnectivity on the probability of sediment connectivity is shown in Figure 7.1e. In this 

figure, lateral disconnectivities (buffers) disconnect everything upstream of them in the 

catchment. In Figure 7.1e, floodplains have been delineated and everything upstream of 

them has automatically been set to zero, i.e. disconnected.  

 The results in Figure 7.1 highlight the efficacy of the authors probability of 

sediment connectivity model to incorporate the different processes and morphologic 
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features controlling sediment transport and reflect a need called upon in the literature to 

include hydrologic and non-hydrologic supply, detachment and transport processes (Fryirs, 

2013; Bracken et al., 2015).  Also, the authors were curious as to the net impact of the 

individual processes on their control of connectivity.  For example, visually it appears that 

the probability of upstream transport might be the most highly correlated with connectivity 

results for the examples shown, as the results in Figure 7.1d upstream transport and 

connectivity spatial results are most similar in comparison to the other features.   

The net impact of the individual probabilities is quantified in Figure 7.2 where the 

probability of connectivity results is shown for the entire watershed for a moderate and 

extreme hydrologic event, as is the individual process-based probabilities used to calculate 

net connectivity.   

Results in Figure 7.2 suggest that “probability of upstream transport” shows the 

most agreement with the probability of connectivity. The most dominant control on the 

results in Figure 7.2 tends to show qualitative agreement with other previous published 

models of sediment connectivity, thus providing confidence that our approach is consistent 

with watershed geomorphology theory.  For example, the Index of Connectivity model has 

showed efficacy for hydrologic and sediment connectivity studies (Vigiak et al., 2012; 

Lopez-Vincent et al., 2013; Messenzehl et al., 2014; Cavalli et al., 2014; Souza et al., 

2016), and this model is based primarily on the coupling of upstream and downstream 

hydrologic transport in a watershed (Borselli et al., 2008).  Yet, at the same time, the results 

in Figure 7.2 highlight the importance of other individual processes upon controlling 

sediment connectivity for some instances, highlighting a need to explicitly include 

disconnectivity and account for hydrologic and non-hydrologic processes (Fryirs, 2013; 
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Bracken et al., 2015).  This may occur when soil water content is high because of 

antecedent moisture, i.e. the upstream transport of connectivity will be high, and a 

hydrologic event of low magnitude produces a small amount of runoff, as shown in Figure 

7.2c for Day 33. In general, however, the most connected days are limited by the 

probability of upstream transport, as shown by Days 72 and 138 in Figure 7.2. 

7.1.2 The probability of sediment connectivity reflects erosion-prone watershed features 

 The ability of the sediment connectivity model to reflect hydrologic and non-

hydrologic detachment and transport perhaps shows the wider utility of the method (e.g., 

Bracken et al., 2015).  Yet the authors contend that the connectivity results should also be 

represented of site specific, erosion-prone features within an individual watershed.  

Therefore, the authors evaluated the probability of sediment connectivity results by 

inspecting regions where it was known that watershed erosion will be pronounced and 

investigating the sediment connectivity results. 

Figure 7.3 shows that the probability of sediment connectivity results tended to 

produce high connectivity for a number of erosion-prone watershed features in the South 

Elkhorn Watershed including steep slopes in newly constructed, urban areas, accumulated 

flow pathways alongside roadways, and gully erosion from concentrated flow pathways in 

agricultural areas. Figure 7.3a shows the occurrence of connectivity from steep slopes in 

an urban/newly constructed development. The location within the watershed is circled in 

red in the bottom-left corner of Figure 7.3a. The imagery at the site of predicted 

connectivity is the first blown-up image shown in Figure 7.3a. Next, the slope raster created 

from the DEM of the watershed is shown for the connected site. The steepest slopes are 

shown in white and the flatter slopes are shown in black. Finally, the right-most image 
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shows the probability of connectivity for the site. Areas in white are connected, and areas 

in black are disconnected. Here, the most connected areas are coincident with steeper 

slopes and on land that is fallow/recently disturbed. 

Figure 7.3b shows the occurrence of connectivity from steep ditches and water 

accumulated from roadways. The location of the site within the watershed is circled in red 

in the bottom-left corner of Figure 7.3b. The imagery at the site of predicted connectivity 

is the first blown-up image shown in Figure 7.3b. Next, the slope raster created from the 

DEM of the watershed is shown for the connected site. The steepest slopes are shown in 

white and the flatter slopes are shown in black. The steepest slopes are generally found 

next to roadways. Finally, the right-most image shows the probability of connectivity for 

the site. Areas in white are connected, and areas in black are disconnected. Here, the most 

connected areas are adjacent to roadways, where slopes are generally steep and 

accumulated concentrated runoff is anticipated to flow.  

Figure 7.3c shows the occurrence of connectivity from concentrated flow paths in 

agricultural gullies. The location of the site within the watershed is circled in red in the 

bottom-left corner of Figure 7.3c. The imagery at the site of predicted connectivity is the 

first blown-up image shown in Figure 7.3c. Next, the slope raster created from the DEM 

of the watershed is shown for the connected site. The steepest slopes are shown in white 

and the flatter slopes are shown in black. Finally, the right-most image shows the 

probability of connectivity for the site. Areas in white are connected, and areas in black are 

disconnected. Here, the most connected areas are coincident with the hillslopes adjacent to 

the stream network, where slopes are generally steep, the land use is pasture, and gully 

formation may occur.  



121 
 

The site specific results of the probability of sediment connectivity’s ability to 

reflect erosion-prone watershed features in the South Elkhorn Watershed is consistent with 

historic research and current sentiment of watershed managers and scientists in the South 

Elkhorn. As previously mentioned, sediment particles are sourced from various agricultural 

and urban land uses within the Upper South Elkhorn watershed. Within the stream corridor, 

primary sediment transport processes include streambank erosion, streambed erosion, 

surficial fine-grained laminae erosion, and mass wasting (Russo and Fox, 2012). Based on 

visual observation, eroding streambanks are prominent throughout the watershed and are a 

primary source of instream erosion. Urbanization in the Upper South Elkhorn watershed is 

a suspected cause of the exacerbated streambank erosion (Russo, 2009). Upland erosion 

production occurs primarily through rill erosion, ephemeral gully erosion, and concentrated 

flow pathways, while diffusional erosion processes (i.e. sheet and interrill erosion) are 

believed to provide a minor contribution to the overall sediment flux at the watershed outlet 

(Blanford, 2017; Gumbert, 2017; Smallwood, 2017). Livestock and construction sites in 

the uplands exacerbate the detachment rates of sediment particles through the removal of 

protective vegetation and exposure to excessive eolian and fluvial shear stresses (Evans, 

2017).  

7.1.3 Sensitivity analysis results for the probability of sediment connectivity 

 Sensitivity analysis focused on the sensitivity of individual parameters impacting 

the sediment connectivity as well as the impact of geospatial resolution upon the results 

(see Figure 7.4).  In general, the parameters used to calculate the probability of sediment 

connectivity show a lack of pronounced sensitivity within a reasonable range reported in 

the literature, which adds confidence that the connectivity model can be applied by 
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incorporating geospatial inputs and hydrologic modeling results for a watershed. Table 7.1 

shows the minimum, maximum, and optimal value of the critical shear stress used to 

determine the probability of connectivity for the Upper South Elkhorn watershed (Hanson 

and Simon, 2001). The critical shear stress of sediment to resist detachment shows a lack 

of sensitivity until reaching a value of approximately 15 Pa, as shown in Figure 7.4a.  Such 

an extremely high critical shear stress will generally not be expected for agricultural surface 

lands (Simon and Thomas, 2002).  

The b exponent represents the flow condition that initiates rill and ephemeral gully 

erosion. According to Torri and Poesen (2014), lower values of the b exponent represent 

laminar flow conditions while higher values of the b exponent represent turbulent flow 

conditions. It is anticipated that, in general, fully turbulent concentrated flow is required to 

breach the threshold required to initiate rill and ephemeral gully erosion (Torri and Borselli, 

2003). b values were predicted to vary between 0.5 for laminar flows and 0.857 for fully 

rough, turbulent flow (Montgomery and Dietrich, 1994). Torri and Poesen (2014), 

however, believe that 0.38 is more representative of turbulent flow conditions because the 

original study by Montgomery and Dietrich (1994) did not consider hydrologic 

disconnectivities in their study, thus over estimating the actual value for b.   Table 7.1 

shows the minimum, maximum, and accepted value of b found from literature (Vandaele 

et al., 1996; Torri and Poesen, 2014). Figure 7.4b shows the sensitivity of the probability 

of connectivity to changes in the b factor.  

The sensitivity of the probability of connectivity to the c factor found in Equation 

(6.14) was also assessed. The c factor is a modification to the a factor from Equation (6.13) 

that represents other sources variation of the a factor of Equation (6.13) that are not 
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represented by the empirical estimation of a via the S0.05 estimation of infiltration. a is 

representative of the climate, soil, land use, and management activities present in the cell 

at a particular time step. One example of a process not modeled by the k factor is piping 

(Torri and Poesen, 2014). The c factor can vary between 0.1 and 1 according to Torri and 

Poesen (2014). A c factor of 0.1 represents conditions where piping is prevalent and 1 

represents a situation where no external processes affect the a factor besides those 

represented in the S0.05 infiltration parameter. The physical significance of the c factor has 

not been intensely investigated in the connectivity literature, but after review of one study 

completed by Verachtert et al., (2010), a range of 0.1 to 0.4 has been suggested as a c factor 

representative of piping (Torri and Poesen, 2014). Table 7.1 shows the minimum, 

maximum, and accepted value of c from literature. 

 A number of past studies have placed emphasis upon the importance of a sediment 

connectivity model that can account for sediment transport thresholds associated with fluid 

energy and sediment resistance (Kirkby et al., 2002; Fryirs et al., 2007; Fryirs, 2013; Nicoll 

and Brierly 2016; Souza et al., 2016).  The overall general sensitivity of the individual 

parameters in the author’s probability of sediment connectivity model tend to suggest that 

such energy and sediment thresholds can be justifiably represented without substantially 

skewing the overall results. 

 On the other hand, the geospatial resolution of the DEM did tend to show 

substantial sensitivity and impact the results.  The 9 m by 9 m (30 ft by 30 ft) DEM tended 

to produce probability of sediment connectivity results that were nearly two times greater 

than the 1.5 m by 1.5 m (5 ft by 5 ft) DEM geospatial analysis, as shown in Figure 7.4b. In 

turn, this reflects a doubling of the active contributing area of watershed erosion to the 
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stream.  Multiple DEM resolutions have been used in the literature. In their analysis, Fryirs 

et al., (2007) used a 25 m by 25 m DEM to analyze the slope threshold required for land to 

actively contribute to the sediment cascade. Borselli et al., (2008) used a 5 m by 5 m DEM 

to create the Index of Connectivity. Cavalli et al., (2013) slightly altered the Index of 

Connectivity and used a 2.5 m by 2.5 m DEM. Figure 7.4b shows the deviation in the 

predicted probability of connectivity for 2006 using the 1.5 m by 1.5 m DEM and the 9 m 

by 9 m DEM. The average deviation between the 1.5 m by 1.5 m and 9 m by 9 m DEM 

was 80%. The predicted probability of connectivity for highly connected days, in 

particular, differed greatly between both DEMs. For example, days 71, 22, 292, and 300 of 

year 2006 were each predicted to have double the amount of connected land when using 

the 9 m by 9 m DEM when compared to the amount of connected land predicted by the 2.5 

m by 2.5 by DEM. The authors believe that this is significant because the days with the 

highest amounts of connectivity are suspected to coincide with days where the most 

amounts of sediment will be transported. Thus, sediment flux prediction will likely differ 

greatly because of DEM resolution.  

The authors suggest that the difference in the predicted probabilities of connectivity 

is attributed to both the size of the DEM pixel and the dissection of the DEM. As shown in 

Figure 7.4c, areas of predicted connected lands do spatially coincide with one another. 

However, since the area of the connected cells for the 9 m by 9 m DEM are 36 times greater 

in area of the 1.5 m by 1.5 m DEM, the overall probability of connectivity for the entire 

watershed will also be higher. Figure 7.4c shows the size comparison of the connected cells 

for the 1.5 m by 1.5 m DEM and the connected cells for the 9 m by 9 m DEM. The 1.5 m 

by 1.5 m DEM better captures the micro-topology of the landscape, better discerning where 
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locally flat slopes occur. Locally flat surfaces recognizable due to resolution of the 1.5 m 

by 1.5 m DEM but not the 9 m by 9 m DEM may increase the amount of disconnectivity 

predicted by the probability of connectivity model. At the same time, the 9 m by 9 m DEM 

may overestimate the slope of the landscape because of the same lack of DEM precision, 

thus causing more cells to be connected. 

As mentioned, the 1.5 m by 1.5 m DEM can better capture micro-landscape 

dissection due to the micro-contributing areas of very small tributaries. According to 

Equation (6.14), the more upstream contributing area that a geospatial cell has, the more 

likely it is to be connected. Geospatial cells with no upstream contributing area, i.e those 

on the boundary of a watershed or micro-catchment, are automatically assumed to have no 

connectivity, which the authors believe to be reasonable considering the lack of 

accumulated runoff that can be generated in such a small contributing area. Thus, the more 

dissected a DEM is into the landscape’s micro-contributing areas, the more the 

disconnectivity in the overall catchment. The dissection of the each DEM can be seen in 

Figure 7.4d. Black pixels represent areas on the boundary of local micro-catchments that, 

because of a lack of upstream contributing area, are assumed to be disconnected. Pink and 

green cells represent disconnected and connected cells predicted from the probability of 

connectivity model, respectively. The 1.5 by 1.5 m DEM has many more disconnected 

cells due to the dissection of micro-catchments as compared to the 9 m by 9 m DEM.   

Because higher resolution DEMs better reflect the actual topography of a landscape 

(Cavalli et al., 2013), the authors suggest that the 1.5 m by 1.5 m DEM does a better job of 

predicting the probability of connected land than the 9 m by 9 m DEM does and reflecting 

the actual dissection of the landscape. Hence, always the highest resolution DEM available 
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should be used to predict the probability of connectivity. For this reason, sediment flux was 

predicted at the Upper South Elkhorn watershed only for the 1.5 m by 1.5 m DEM.  

7.2 Probability of Sediment Connectivity for the South Elkhorn 

7.2.1 Net results for the South Elkhorn Watershed 

The authors estimated the net probability of sediment connectivity for the South 

Elkhorn watershed for 2006, 2007 and 2008.  Temporally distributed results for 2006 are 

shown in Figure 7.5 as is the spatial distribution of the probability of sediment connectivity 

for a wet day in the South Elkhorn Watershed on March 12, 2006, the 72nd day of the year. 

For 2006, the probability of sediment connectivity ranges between 0%, during no 

rainfall, to approximately 13%, during a day with wet soils and high rainfall (Figure 7.5a). 

This means that on the most connected day of 2006, approximately 13% of the catchment 

had the potential to contribute to the sediment cascade. 13% connectivity occurred on 

March 12, 2006, i.e. the 72nd day of the year (time step 72).  For the majority of the year, 

the catchment is disconnected.  At least some connectivity (i.e., greater than 0%) of the 

catchment uplands only occurs during 104 days of 2006 (i.e. only on days when rain 

produced runoff in the catchment).  Rainfall occurred on 132 days of the year, and runoff 

occurred on 104 days of the year, which highlights the importance of hydrologic 

connectivity in this watershed system.  It is of interest to note that just because rainfall 

occurs in the catchment, sediment connectivity will not necessarily also occur. However, 

days where runoff occurred in the catchment correlated with days with sediment 

connectivity in the catchment. 

Figure 7.5b shows the connected areas for March 12 of 2006, where dark gray 

represents connected areas and white represents disconnected areas.  As shown in the 
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figure, the northern portion of the watershed shows the highest connectivity attributed to a 

shift in the soil conditions in this portion of the watershed.  Engineering properties of the 

soils shift lower in the watershed from 64% hydrologic soil group B, which indicates a 

moderate rate of water transmission according to the NRCS (1986), 30% hydrologic soil 

group C, which indicates a low rate of water transmission, and 6% hydrologic soil group 

D, which indicates a very low rate of water transmission to 26% hydrologic soil group B, 

45% hydrologic soil group C, and 29% hydrologic soil group D. The shift in the 

engineering properties of the soil is attributed to the decrease in percent sand and increase 

in percent fine clay in the lower portion (northwest portion) of the watershed (NRCS, 

2006). This attributes to the higher connectivity predicted in the northwest portion of the 

watershed.  

The central eastern half of the watershed has connectivity associated with the urban 

and surburban regions due to an increase in the imperviousness of the landscape in this 

portion of the catchment. The curve number of this region, which is an empirical measure 

of the imperviousness and infiltration capacity of the landscape, is higher in this region, 

and thus produces more runoff. The increase of the production of runoff in this region and 

the reduced infiltration capacity of the soil are indicative of the prediction of higher 

amounts of hydrologic detachment and upstream hydrologic transport of sediment than 

other portions of the watershed.  

7.2.2 Comparison of the South Elkhorn Watershed with other Systems 

 It is not possible to quantitatively compare the sediment connectivity results from 

this study with that of other studies in the literature due to the fact that the modeling 

approach here is somewhat unique.  Nevertheless, some qualitative comparison is possible 
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in order to understand the watershed geomorphology of the study system in relation to 

other studies where the sediment connectivity has been considered. 

 In general, the South Elkhorn Watershed could be classified as an event-resilient, 

disconnected system as opposed to a highly connected, event-sensitive landscape (Fryirs 

et al., 2007).  The low connectivity results for the South Elkhorn suggest the relatively low 

propagation of disturbances within the watershed (Borselli et al., 2008).  The fairly well 

established non-intensive pasture systems (i.e., equine systems) as well as the mild 

watershed gradients promote a lack of overall connectivity for the watershed.  The South 

Elkhorn results tend to contrast steeper gradient systems where connectivity results are 

much higher, as in the work of Fryirs et al., (2007). Fryirs et al., (2007) predicted the active 

contributing area for four landscape units in the upper Hunter catchment in Australia, 

which have relatively high elevation, deep dissection, and a rugged, hilly landscape. 

Comparatively, the Upper South Elkhorn watershed, which is within the Inner Bluegrass 

Physiographic region of Kentucky, has gently rolling hills and relatively mild slopes. For 

what was assumed to be a moderate-sized storm event, approximately 48% of the 

catchment was predicted to be connected, which contrasts greatly with the predicted results 

from the authors’ method. Previous research has suggested that in-stream sediment 

functions within the lowland system substantially contrast in-stream sediment processes of 

steeper systems (Ford and Fox, 2015), and the results here extend the geomorphologic 

spectrum to the upland template. 

 One potentially interesting connectivity feature in the South Elkhorn Watershed 

was the importance of the accumulated flow pathways alongside roadways (i.e., ditches, 

roadside gullies) in the urban regions of the watershed.  The net result was that urban 
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regions of the watershed could show net higher connectivity than surrounding agricultural 

regions.  The importance of roadways to induce erosion and sediment connectivity has 

been discussed previously for mountainous catchments (Latocha et al., 2014), and urban 

sprawl, i.e., urbanization, has been well understood to induce gully formation and 

channeling processes (Trimble, 1993).  However, few papers to our knowledge have 

reported the net importance of roadway ditches and gullies in well established urban 

environments.  The coupling of the probability of sediment connectivity model with the 

1.5 m by 1.5 m geospatial resolution was able to highlight the importance of the landscape 

features. 

7.3 Spatial and Temporal Distribution of the Probability of Sediment Connectivity 

7.3.1 Spatial distribution of connectivity for the South Elkhorn Watershed 

 The authors also assessed the spatial variability of sediment connectivity 

longitudinally in the watershed by investigating the probability of sediment connectivity 

from catchment (~1 km2) to mid-sized watershed scales (~60 km2).  Spatial variability 

results identified longitudinally included a weak increase in the probability of sediment 

connectivity with scale (see Figure 7.6).  in addition, the variance of sediment connectivity 

was highest at the smaller scale and the variance tended to decrease as watershed scale 

increased.  

The longitudinal variability of sediment connectivity tends to be under-investigated 

in the literature, yet there tends to be competing processes operating at different scales 

within a watershed configuration (Phillips, 2003; Borselli et al., 2008; Fryirs, 2013).  That 

is, at relatively smaller, hillslope to small catchment scales higher relative landscape 

gradient is suggested to promote sediment connectivity far from low gradient deposition 
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zones and floodplains (Fryirs et al., 2007).  On the other hand, as the watershed scale 

increases, upstream flow accumulation has the potential to concentrate fluid providing the 

hydrologic connectivity for conveying sediment (Borselli et al., 2008).  The results in 

Figure 7.6 tend to suggest the latter process, i.e., flow accumulation, for the South Elkhorn, 

which is likely attributed to the dominance of gully erosion and erosion within concentrated 

flow pathways as opposed to sheet erosion processes or mass wasting.  In either case, the 

variance of sediment connectivity seems to be higher at smaller scales, which seems 

logical.  That is, the processes reflecting sediment connectivity might vary from sub-

catchment to catchment, in the present case such as the distribution of roadways or 

previously impacted agricultural sites.   

 Fryirs (2013) conceptually reviewed the linkages of sediment in an idealized 

catchment at the headwaters, mid-catchment, and lowland plain zones. In general, the 

headwaters of a catchment, i.e. catchment areas with steep slopes and low order streams, 

are well connected between hillslopes and channels and efficiently transfer flow and 

sediment longitudinally. Further downstream, in the mid-catchment zone, hillslope-

channel connectivity becomes irregular, channel-floodplain connectivity is irregular, but 

there is still efficient transfer of flow and sediment longitudinally. In the lowland plains, 

hillslope-channel connectivity is limited and sediments are inefficiently transferred 

longitudinally. Channel-floodplain connectivity, i.e. lateral connectivity, is high, however, 

since floodplains are generally more easily accessible in the lowlands. As water and 

sediments flow from the headwaters to the lowland plain, sediment storage is 

conceptualized by Fryirs to increase, sediment delivery decreases, and there is increased 

channel-floodplain connectivity. Since the Upper South Elkhorn is a lowland watershed, 
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the spatial distribution of connected land as predicted by the authors’ probability of 

connectivity model compares well with Fryirs’ theory.   

7.3.2 Temporal distribution of sediment connectivity for the South Elkhorn Watershed 

Connectivity is a function of both the geomorphology of the catchment, i.e. 

structural or static connectivity, and the hydrology of the catchment at a particular time 

step, i.e. functional or dynamic connectivity (Benda and Dunne, 1997; Bracken and Croke, 

2007; Lexartza-Artza and Wainwright, 2009; Fryirs, 2013). Therefore, connectivity will 

dynamically change on a daily basis. As previously mentioned, for 2006, 104 days have 

some connectivity.  The Probability of Sediment Connectivity model predicted that 

approximately 13.47% of the catchment had the potential to contribute to the sediment 

cascade on March 12, 2006 (day 72). The average percent of connected land for the days 

with some connectivity for the study period is 2.31% and the standard deviation is 0.0362. 

Figure 7.7 shows the frequency distribution of the percent of connected land on 

connected days for the study year. 0% to 1.68% of the catchment was connected for 68 

days of the study period.  A second frequency distribution was created where days with 

less than 1% connectivity were neglected. Neglecting days with less than 1% connectivity 

yielded 38 days where the catchment had some sediment connectivity. The beta distribution 

best fits the selected data (beta: 0.73, 1.08, 1.13, 13.48; Ch-Sq is 9.71; p-value is 0.137).  

The beta distribution is a logical choice for temporal representation of the probability of 

sediment connectivity given that the beta distribution is continuous in nature but bounded 

by 0 and 1, and therefore is suitable for representing the behavior of percentages. 

Dynamically, we see that connectivity reflects a beta-like distribution.  While few 

studies have investigated the dynamic nature of connectivity, the importance of dynamic 
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connectivity within connectivity estimation is well known (Borselli et al., 2008; Bracken 

et al., 2015).  To this end, the probability of sediment connectivity definition presented in 

this study highlights the potential to couple hydrologic connectivity via the hydrologic 

model within the sediment connectivity framework.  As researchers work towards a better 

understanding of sediment connectivity across different watershed systems, it is suggested 

that dynamic connectivity might be included via frequency analyses, e.g., using a beta-like 

distribution. 

7.4 Watershed Erosion Modeling Results 

7.4.1 Evaluation of the watershed erosion modeling 

 As mentioned in the methods section, the authors adjusted the sediment transport 

parameters within the watershed erosion modelling in order to calibrate and validate the 

model.  The calibration and validation procedure was first performed on a daily basis, and 

thereafter validation was also performed on an annual basis (Figure 7.8).  Predicted and 

observed sediment flux values for specified days of the study period are shown in Figure 

7.8a, and in general good agreement is seen between the data and modeling results 

(R2=0.95).  Assimilation of hydrologic data was performed in order to reduce the 

propagation of error from the SWAT hydrologic model to the watershed erosion model at 

a daily time step and therefore allow isolated daily calibration and validation of the erosion 

model.  The method worked well to reduce the propagation of error.  However, the authors 

were also curious as to the net impact of data assimilation, or lack thereof, upon the 

watershed erosion model results.  As shown in Figure 7.8b, while some daily discrepancy 

existed between sediment flux estimates for assimilated and non-assimilated model runs, 

the net sediment flux was identical at the end of the 2006 simulation year.  The results 
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highlight the effectiveness of our data assimilation procedure for calibration purposes but 

also the annual prediction capabilities of the watershed erosion model for time periods 

when data assimilation is not possible.  Sensitivity analysis of parameters in the calibrated 

watershed erosion model showed the importance of the erodibility coefficient, which has 

been found to vary widely in the literature (Hansen and Simon, 2001).  The time of 

concentration also showed moderate sensitivity upon sediment flux while the impact of the 

friction coefficient and critical shear stress of sediment to resist erosion was marginal upon 

the sediment yield results.  Annual sediment yield for the watershed (see Table 7.2) was 

just 6% greater than annual sediment yield estimated for the upland contribution estimates 

reported in Russo and Fox (2012) for the same time period, which provides further 

validation of the modeling results. 

 The authors highlight the concept that the spatially explicit probability of sediment 

connectivity can be used as a precursor to estimating watershed erosion, which can be 

temporally distributed throughout a year due to the dynamic nature of sediment transport.  

At the same time, and perhaps somewhat surprisingly, the authors highlight that the 

probability of sediment connectivity alone is not necessarily a good predictor of sediment 

flux associated with watershed erosion.  This idea is highlighted in Figure 7.9, where both 

the probability of sediment connectivity and sediment flux are shown for 2006.  Obviously, 

nonzero sediment flux cannot occur unless some sediment connectivity exists in the 

watershed given the logic assumed in our watershed erosion model.  Nevertheless, the 

probability of sediment connectivity by itself is a poor predictor of sediment flux (i.e., via 

visual comparison of temporal distributions in Figure 7.9).  The results highlight the 

sentiment that sediment connectivity alone does not provide the research with an estimate 
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of flux, which has been highlighted in the framework of Bracken et al. (2015).  In the 

present study, the reason for the lack of agreement is attributed to the need for estimating 

the flow accumulated fluid shear stress via hydraulic formula, as was performed in the 

watershed erosion modeling.  This concept is further mentioned in the discussion chapter.   

 While sediment flux did not necessarily agree with the probability of sediment 

connectivity, coupling of the probability of sediment connectivity and erosion formula does 

a very nice job of providing a spatially explicit estimation of erosion rates across the 

landscape.  Consistent with the probability of sediment connectivity results, erosion-prone 

watershed features also showed sediment flux and included erosion from newly constructed 

developments, urban areas, accumulated flow pathways alongside roadways, and gully 

erosion from concentrated flow pathways in agricultural areas.  The result is highlighted 

for accumulated flow pathways in roadside ditches (see Figure 7.10) where the watershed 

erosion model results provide an estimate of erosion rates.   
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Figure 7.1: Examples of how sediment processes and morphology reflected within 
probability of sediment connectivity results 

 

(b) Probability of sediment detachment 

(c) Probability of downstream transport (d) Probability of upstream transport 

(e) Probability of disconnectivity 

(a) Probability of sediment supply 
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Figure 7.2: Results of net impact of individual probabilities upon the probability of 
sediment connectivity 
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Figure 7.2 (continued) 
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Figure 7.2 (continued) 
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Figure 7.3: Results of net impact of individual probabilities upon the probability of 
sediment connectivity 
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Table 7.1: Minimum, maximum, and optimal values of sensitive parameters used in the 
probability of connectivity model and percent change in the probability of connectivity 

     
% Change, P( C ) 

Parameter Unit Minimum Optimal  Maximum Min Max 

τcr Pa 0.1 3.75 75 14.13 -98.6 

b unitless 0.1 0.38 4 109.3 -34.93 

c unitless 0.1 1 1 105.81 0 
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Figure 7.4: Sensitivity analysis for the probability of sediment connectivity including: (a) 
sensitivity of parameters, (b) sensitivity of geospatial resolution, (c) comparison of the 
1.5 m by 1.5 m DEM and the 9 m by 9 m DEM, and (d) a comparison of the dissection 

(a) Sensitivity of individual parameters 

 

 

(b) Sensitivity of geospatial resolution  
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Figure 7.4 (continued) Sensitivity analysis for the probability of sediment connectivity 
including: (a) sensitivity of parameters, (b) sensitivity of geospatial resolution, (c) 
comparison of the 1.5 m by 1.5 m DEM and the 9 m by 9 m DEM, and (d) a comparison 
of the dissection of the 1.5 m by 1.5 m DEM and the 9 m by 9 m DEM. 

(c) Comparison of the 1.5 m by 1.5 m DEM and the 9 m by 9 m DEM 

 

 

 

(d) Comparison of the dissection of the 1.5 m by 1.5 m DEM and the 9 m by 9 m DEM 

T  
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Figure 7.5: Probability of sediment connectivity results for the South Elkhorn 
Watershed including (a) results for one year, 2006 shown, and (b) spatial distribution 
on a day of high connectivity 

(a) Probability of sediment connectivity results throughout one year   

(b) Probability of sediment connectivity for March 12, 2006 
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Figure 7.6: Spatial distribution of the probability of sediment connectivity for the South 
Elkhorn Watershed 
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Figure 7.7: Temporal distribution of the probability of sediment connectivity for the 
South Elkhorn Watershed 

 

(a) Frequency distribution for the probability of sediment connectivity (all days)  

 

(b) Frequency distribution for the probability of sediment connectivity (connected days 
only)  

(c) Frequency distribution and model fit for the probability of sediment connectivity 
(connected greater than 1%)  
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Figure 7.8: Evaluation of the watershed erosion model results 

(a) Predicted and observed sediment flux for specified days of the study period 

 

(b) Sediment flux estimated with non-assimilated and assimilated streamflow data 

 

(c) Sensitivity analysis of parameters in the sediment transport model 
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Table 7.2: Sediment flux by year for the watershed erosion model results 

Year Flux (tonnes/yr) 

2006 3,440 

2007 2,620 

2008 3,630 

Average 3,230 
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Figure 7.9: Results of percent connected and sediment flux for 2006 
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Figure 7.10: Connected areas and the erosion rates for connected cells for a road network 
on day 72 of 2006 
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Chapter 8 Discussion 

8.1 Watershed Erosion Modelling Advancement by Accounting for Sediment 

Connectivity 

The present study shows the efficacy of coupling the sediment connectivity concept 

with watershed erosion modeling, perhaps for the first time, to our knowledge.  The authors 

suggest the efficacy of the coupled sediment connectivity and watershed erosion model 

approach for a number of reasons.   

First, it certainly appears that watershed erosion model platform accounts for spatial 

variability within the landscape by considering the probability of sediment connectivity 

using a 1.5 m by 1.5 m digital elevation model (DEM).  Within the evaluation of the 

probability of sediment connectivity, the DEM resolution was shown to be the most 

sensitive component considered and the higher resolution was shown to better represent 

sediment transport processes across the landscape.  The method offers the utility of 

resolving the spatial complexity of sediment transport across the landscape as DEM 

resolution continues to be improved and the high resolution DEMs become publically and 

freely available.  It was particularly surprising to the authors how well the high resolution 

DEMs resolved sediment connectivity in and around roadside ditches.  For this reason, the 

watershed erosion modelling approach adopted herein provides a methodology that allows 

inputs of the now highly resolved spatially explicit information available from the 

processing of satellite data.   

Second, the watershed erosion model structure is suggested to aptly account for 

conservation criteria within the sediment transport model by reflecting concepts of supply, 

shear, and transport limitations.  To this end, it is important to consider how models of 
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sediment connectivity are coupled with formulas for watershed erosion and sediment 

transport.  Ideally, the research might perform a qualitative check by asking: have supply, 

shear, and transport conditions all been aptly considered in my coupled modeling analyses?  

In the present study, modelling of the probability of sediment connectivity considered 

sediment supply limitations in a spatially explicit manner across the watershed by 

calculating the probability of sediment supply using geospatial analyses.  The transport 

limitation was also considered explicitly within the probability of sediment connectivity 

model when calculating the spatially and temporally explicit upstream and downstream 

probabilities of transport (see Fig 7.2).  A further check of transport limitations and the 

sediment deposition that can accompany limited energy for sediment transport was 

considered via lateral discontinuities in the landscape as identified using field 

reconnaissance in the watershed and the spatially explicit calculation of the probability of 

sediment disconnectivity.  The appropriateness of the probability of sediment connectivity 

model to reflect supply and transport limitations on a daily basis, placed emphasis upon 

the watershed erosion formula to more explicitly consider shear limitations.  For this 

reason, the excessive shear method was adopted and the authors used a hydraulic approach 

so that fluid shear stress could be estimated when considering both runoff depth and the 

accumulation of fluid within concentrated flow pathways.   

Third, site specific sediment transport features and processes that are associated 

with the watershed configuration and morphology were able to be represented by the 

watershed erosion model.  Watershed features that were captured by the modelling 

included erosion-prone steep slopes in newly constructed, urban areas, accumulated flow 

pathways alongside roadways, and gully erosion from concentrated flow pathways in 
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agricultural areas.  The erosion features represented within both the spatially explicit 

probability of sediment connectivity and sediment flux estimates were highly consistent 

with the authors’ conversations with local watershed managers and conservationists as well 

as consistent with field information contained in the WAVES documentation.  The 

agreement between the field and modelling results gave further confidence to the model 

efficacy. 

Fourth, evaluation of watershed erosion model showed that the model performed 

well.  The sediment flux estimates showed verification for both daily and annual time 

scales.  In this manner, the modeling results compare well with sediment flux data collected 

in the watershed. 

8.2 Lowland Watershed Configuration Identified with Sediment Connectivity 

 One attractive feature of a watershed erosion model that makes use of the sediment 

connectivity is that information regarding the watershed configuration might be derived 

from the model’s results (Phillips, 2003; Fryirs, 2013).  The results of the present study 

provide additional characterization of lowland watershed systems that has not been 

reported previously.  In this context, the lowland watershed system can be regarded as a 

system contrary in many ways to that of high gradient watershed systems.  Previous work 

has suggested the prominence of the biologically-active surficial fine grained laminae 

presence and the deposition of fine sediment within low-gradient watersheds that contrasts 

the high energy steeper watershed systems that transport fine sediments to the watershed 

outlet (Ford and Fox, 2014).  Our morphologic understanding of the lowland system is 

further extended in this study as the author’s find that the uplands of the system are most 

often de-coupled from the stream corridor.  The lowland stream system studied here is only 
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coupled with about 10% of its uplands, even on the most hydrologically active day of a 

given year.  The results show a stark contrast to steeper watershed systems, such as the 

steep catchment system studied in Fryirs et al. (2007) where a moderate-sized storm event 

induced pronounced sediment connectivity and activated approximately 50% of the upland 

catchment land area.   

 The configuration of the lowland watershed is worthy of discussion in terms of its 

connectivity, but even more so in terms of its disconnectivity.  As previously mentioned, 

connectivity in the uplands, i.e., 10% of the watershed areas on the wettest days of the year, 

was a result of erosion-prone steep slopes in newly constructed urban areas, accumulated 

flow pathways alongside roadways, and gully erosion from concentrated flow pathways in 

agricultural areas.  In general, urban and suburban regions were more highly connected 

than agricultural regions, when soil conditions were similar, given the presence of a higher 

concentration of impervious surfaces and the well-defined drainage network, i.e., ditches 

alongside roadways. 

On the other hand, the lowland watershed was highly disconnected with many 

features contributing to this disconnectivity.  90% of the watershed area was disconnected 

on the wettest days of the year, attributed to the micro-topography across the landscape 

surface.  The majority of disconnectivity within the watershed is attributed to undulating 

land surfaces of the lowland that included the presence of low gradient to flat slopes.  This 

micro-topology of the land, or lack thereof, created locally flat surfaces causing micro-

sources of disconnectivity such that runoff loses its energy and initiated sediment deposits.  

The authors’ field visits during storm events qualitatively justified the geospatial results 

from the sediment connectivity modeling.  The authors found that even during intensive 
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rainfall events when runoff and flow accumulation was pronounced within ditches and 

swales, there was little to no runoff or sediment transport across the pasture land surfaces 

and rather the authors found pooling within micro-topography as opposed to runoff.  The 

micro-topography represented with the high resolution digital elevation model is worth 

mentioning given that the watershed itself was not flat (i.e., average watershed/hillslope 

gradient was 7%).  Other less pronounced sources of disconnectivity within the watershed 

included supply limitations (20% of the disconnectivity) and floodplain buffers, which 

provided later disconnectivity (5% of the disconnectivity).  Accounting for the mentioned 

disconnectivity has been reported as one of the most important considerations within 

modeling the sediment continuum (Fryirs, 2013), and it is expected that the new 

disconnectivity knowledge gained here for lowland watershed systems will assist with 

future research by others in similar agricultural and urban mild gradient systems.   

Other features of the watershed configuration and its connectivity worth 

mentioning are that the spatial distribution of connectivity longitudinally in the system 

exhibited a power function relationship while the temporal distribution of the probability 

of sediment connectivity was best described with a beta distribution.  These functions 

might be investigated and tested for other lowland systems in an effort towards describing 

a more universal description of sediment connectivity for watershed systems.   

 Another potentially attractive feature of the connectivity-based watershed erosion 

model is the ability to potentially reduce the cost of computational hydraulics.  Yet the 

expense of the added subroutines for probability of sediment connectivity calculations 

might also be considered.  In the present application, the watershed modeling included 

calculations for 3×1010 space-time combinations.  The probability of sediment connectivity 
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subroutine added explicit formula to the watershed erosion model; and the calculations 

were performed in a geospatial modeling software that required several hours to run on a 

desktop PC.  Considering all space-time combinations in the watershed modeling, only 

0.7% of the combinations contained connectivity.  Therefore, only 2×108 space-time 

combinations need to be considered within the hydraulic and sediment transport formula, 

and thus 2.98×1010 space-time combinations were removed from the watershed modeling.  

Hydraulic calculations are often computationally intensive requiring solution of implicit 

formula at each space-time step.  Computational sediment transport is even more 

demanding as higher dimensional formula and advanced routing methods are implemented.  

For these reasons, the authors feel the inclusion of the connectivity-based watershed 

erosion model may have a net reduction in overall computational complexity.  Further, the 

spatially explicit representation of sediment connectivity does not require strenuous data 

input requirements of some models (i.e., physically based models) thus further reducing 

the computational demands and complexity of the model domain. This sentiment is 

mirrored by Cavalli et al., (2013), whose only input to his iteration of Borselli et al.’s IC 

model (2008), was a DEM. At the same time, the connectivity-based watershed erosion 

model provides the flexibility to include advanced computational complexity, as needed.  

That is, simulation of the breach of a buffer, barrier, or blanket within the watershed 

configuration allows calling up sophisticated hydraulic and sediment subroutines that could 

simulate such spatiotemporal feedback and connectivity between sediment sources and 

sinks (Bracken et al., 2015). 
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8.3 Discussion of Connectivity in Existing Watershed Erosion Models 

One potential criticism of this research might be the contention that many 

watershed erosion models already implicitly account for sediment connectivity.  The 

authors provide some discussion of this idea to thwart such criticism but at the same time 

highlight where existing models do already account for connectivity. 

Some spatially explicit watershed models may account for connectivity implicitly 

through the parameterization of watershed sedimentation processes such as deposition. 

This discussion assesses the ability of models to account for connectivity implicitly and 

compares this ability to the Probability of Connectivity model developed in this thesis. The 

watershed erosion and sedimentation models assessed here are widely popular in the soil 

science and engineering community (Merritt et al., 2006) and have been discussed by 

previous literature. The models assessed here are the Universal Soil Loss Equation (USLE) 

developed by Wischmeier and Smith (1978), and the Watershed Erosion Prediction Project 

(WEPP) developed in part by Laflen et al., (1991). 

8.3.1 USLE 

The Universal Soil Loss Equation (USLE) was developed by Wischmeier and 

Smith (1978) and is widely used in the United States. The USLE is an empirical model 

developed for small hillslopes. Derivatives of the USLE can predict erosion at the 

watershed scale on an annual basis. Annual rainfall, an estimate of soil erodibility, land 

cover, and topographic information determine annual soil loss. The USLE is given by the 

equation 

𝐴𝐴 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅          (Eq. 8.1) 
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where A is the annual soil loss per unit area, R is the rainfall erosivity factor, K is the soil 

erodibility factor, L is the slope-length factor, S is the slope-steepness factor, c is the cover 

and management factor, and P is the support practices factor. The USLE is generally 

popular because of its low input requirements and ease of use (Loch and Rosewell, 1992). 

However, USLE is not event based, does not account for gully erosion and mass movement, 

and it cannot model deposition. Ephemeral gullying is not accounted for because 

concentrated flow pathways are not taken into consideration. The use of the USLE is 

limited to the United States because empirical models are limited to data collected from 

the study site (Merritt et al., 2006).  

 The USLE seldom accounts for connectivity. Calculation of sediment yield on an 

annual basis does not account for the individual pathways of sediment transport and does 

not capture the dynamic nature of sediment connectivity. While the Probability of 

Connectivity model does not explicitly model deposition, deposition is implicitly 

parameterized via modelling of disconnectivitiy features, which are assumed to promote 

deposition. 

8.3.2 WEPP 

 The Watershed Erosion Prediction Project (WEPP) model is a physically based 

model that uses the continuity equation to model rill and interrill detachment and/or 

deposition. The continuity equation is  

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐷𝐷𝐷𝐷 + 𝐷𝐷𝐷𝐷         (Eq. 8.2) 

where dqs/dx is the sediment rate per unit width of the channel, Dr is the net rill detachment 

or deposition rate, and Di is the net interrill detachment or deposition rate. The model has 
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been widely applied to hillslopes in the United States (Laflen et al., 1991). WEPP does not 

consider sediment erosion, transport, or deposition in permanent channels, such as gullies 

and perennial streams. However, a version of WEPP has been developed that can model 

ephemeral gullies. WEPP predicts the spatial and temporal distributions of soil loss, 

sediment yield, and the soil-water balance; i.e. WEPP can predict the location and rates of 

deposition and erosion within the watershed. However, if rills do not form on hillslopes 

due to vegetative cover or limited hydraulic shearing, the WEPP model will not work 

properly. Foliage information and crop management practices are essential inputs to WEPP 

because they will largely affect soil erosion and hydrological processes at the site (Merritt 

et al., 2006). Hydraulic roughness predicts runoff and water loss. Flux at the watershed 

outlet is quantified using the three stages of erosion: detachment, transport, and deposition. 

Large data input requirements limit WEPP’s usability.  

 (Dis)connectivity is best modeled implicitly through spatially explicit models 

because individual transport pathways of sediment are observable. Disconnectivity is 

implicitly accounted for in WEPP via deposition estimations. Disconnecting features, 

created via tillage operations and from plant/crop coverage, contribute to deposition and 

further disconnectivitiy. However, WEPP does not account for features that may 

completely cutoff entire regions of watersheds because of permanent disconnectivitiy. 

Since WEPP does not model instream transport or permanent gully erosion, longitudinal 

(dis)connectivity is not accounted for. The Probability of Connectivity model currently 

only accounts for lateral connectivity in catchment uplands, but soon will be coupled with 

a longitudinal, instream transport model, which accounts for barriers.  
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WEPP is computationally complex and requires numerous inputs in order to be 

calibrated.  Coupling an erosion model with a predictive connectivity model may alleviate 

the complexity of simulating a spatially explicit, yet over-parameterized and 

computationally intensive, sediment transport model like WEPP.  
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Chapter 9 Conclusions 

 The authors were motivated to advance watershed erosion modelling tools through 

a better representation of spatially-explicit processes via including the probability of 

sediment connectivity concept within a modeling platform.  The primary features included 

in the new watershed modeling platform, that extend current research within the peer-

reviewed literature, include a new theoretical probability of sediment connectivity model 

that can incorporate the multiple processes impacting connectivity and (dis)connectivity; 

and a theoretical method to predict dynamic connectivity and couple it with a hydrology 

model.  The authors applied the watershed erosion model within a geospatially explicit 

computational framework that includes sediment (dis)connectivity to the water supply 

problem in Kentucky USA. 

 Conclusions of this work suggest the efficacy of a watershed erosion modelling 

platform that includes inclusion of the probability of sediment connectivity concept.  

Efficacy of the methodology is supported by the fact that: (1) the watershed erosion model 

platform aptly accounts for spatial variability within the landscape when considering the 

probability of sediment connectivity using a 1.5 m by 1.5 m digital elevation model; (2) 

the watershed erosion model structure justifiably accounts for conservation criteria by 

reflecting concepts of supply, shear, and transport limitations; (3) site specific sediment 

transport features and processes that are associated with the watershed configuration and 

morphology were able to be represented by the watershed erosion model; and (4) 

evaluation of the watershed erosion model showed that the model performed well.  Further, 

the authors highlight the potential of a connectivity-based watershed erosion model to 

reduce computational complexity and costs in future research.  Limitations of the 
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modelling platform included its primary emphasis upon diffuse connectivity within the 

uplands and direct connectivity within gullies and swales, and it is expected that further 

emphasis upon direct connectivity within the stream corridor might enhance the model 

structure in future research.  It is hopeful that the efficacy of the watershed erosion 

modeling platform be further validated by other researchers in other watershed systems in 

order that its limitations and advantages can be better understood. 

 Conclusions of this work also present a broader understanding of the sediment 

continuum within lowland watershed systems with agricultural and urban land uses—a 

class of watershed systems that have gained recent research interest due to their influence 

on water quality and water supply.  The lowland system studied here is only coupled with 

about 10% of its uplands, even on the most hydrologically active day of a given year.  The 

results show a stark contrast to steeper watershed systems, moderate events activate 50% 

of the upland catchment land area.  Connectivity in the uplands, i.e., 10% of the watershed 

areas on the wettest days of the year, was a result of erosion-prone steep slopes in newly 

constructed urban areas, accumulated flow pathways alongside roadways, and gully 

erosion from concentrated flow pathways in agricultural areas.  In general, urban and 

suburban regions were more highly connected than agricultural regions, when soil 

conditions were similar, given the presence of a higher concentration of impervious 

surfaces and the well-defined drainage network, i.e., ditches alongside roadways.  The 

lowland watershed was highly disconnected with many features contributing to this 

disconnectivity.  90% of the watershed area was disconnected on the wettest days of the 

year, attributed to the micro-topography across the landscape surface.  The majority of 

disconnectivity within the watershed is attributed to undulating land surfaces causing 
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micro-sources of disconnectivity such that runoff loses its energy and initiated sediment 

deposits.  The micro-topography represented with the high resolution digital elevation 

model is worth mentioning given that the watershed itself was not flat (i.e., average 

watershed/hillslope gradient was 7%).  Other less pronounced sources of disconnectivity 

within the watershed included supply limitations (20% of the disconnectivity) and 

floodplain buffers, which provided later disconnectivity (5% of the disconnectivity).  It is 

hopeful that the watershed configuration results found in this study be further investigated 

in other lowland systems, in order that a greater morphologic understanding of watersheds 

be gained. 
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